Step | Hyp | Ref
| Expression |
1 | | nnnn0 12170 |
. . . 4
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
2 | | cpmadugsum.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | cpmadugsum.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
4 | | cpmadugsum.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | cpmadugsum.y |
. . . . 5
⊢ 𝑌 = (𝑁 Mat 𝑃) |
6 | | cpmadugsum.t |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
7 | | cpmadugsum.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
8 | | cpmadugsum.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
9 | | cpmadugsum.m |
. . . . 5
⊢ · = (
·𝑠 ‘𝑌) |
10 | | cpmadugsum.r |
. . . . 5
⊢ × =
(.r‘𝑌) |
11 | | cpmadugsum.1 |
. . . . 5
⊢ 1 =
(1r‘𝑌) |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemB 21931 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
13 | 1, 12 | sylanr1 678 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemC 21932 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
15 | 1, 14 | sylanr1 678 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
16 | 13, 15 | oveq12d 7273 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
17 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℂ) |
18 | | npcan1 11330 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℂ → ((𝑠 − 1) + 1) = 𝑠) |
19 | 18 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ → 𝑠 = ((𝑠 − 1) + 1)) |
20 | 17, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ → 𝑠 = ((𝑠 − 1) + 1)) |
21 | 20 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑠 ∈ ℕ →
(0...𝑠) = (0...((𝑠 − 1) +
1))) |
22 | 21 | mpteq1d 5165 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
23 | 22 | oveq2d 7271 |
. . . . 5
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
24 | 23 | ad2antrl 724 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
25 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
26 | | cpmadugsum.g |
. . . . 5
⊢ + =
(+g‘𝑌) |
27 | | crngring 19710 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
28 | 27 | anim2i 616 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
29 | 28 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
30 | 4, 5 | pmatring 21749 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
32 | | ringcmn 19735 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
34 | 33 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ CMnd) |
35 | | nnm1nn0 12204 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑠 − 1) ∈
ℕ0) |
36 | 35 | ad2antrl 724 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑠 − 1) ∈
ℕ0) |
37 | | simpll1 1210 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑁 ∈ Fin) |
38 | 27 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑅 ∈ Ring) |
41 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
42 | 21 | feq2d 6570 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏:(0...𝑠)⟶𝐵 ↔ 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
43 | 41, 42 | syl5ibcom 244 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → (𝑠 ∈ ℕ → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
44 | 43 | impcom 407 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
45 | 44 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
46 | 45 | ffvelrnda 6943 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑏‘𝑖) ∈ 𝐵) |
47 | | elfznn0 13278 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...((𝑠 − 1) + 1)) → 𝑖 ∈
ℕ0) |
48 | 47 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑖 ∈ ℕ0) |
49 | | 1nn0 12179 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 1 ∈
ℕ0) |
51 | 48, 50 | nn0addcld 12227 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑖 + 1) ∈
ℕ0) |
52 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 21797 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑖) ∈ 𝐵 ∧ (𝑖 + 1) ∈ ℕ0)) →
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
53 | 37, 40, 46, 51, 52 | syl22anc 835 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
54 | 25, 26, 34, 36, 53 | gsummptfzsplit 19448 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
55 | | ringmnd 19708 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
56 | 31, 55 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Mnd) |
57 | 56 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ Mnd) |
58 | | ovexd 7290 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑠 − 1) + 1) ∈ V) |
59 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑁 ∈ Fin) |
60 | | nn0fz0 13283 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈ (0...𝑠)) |
61 | 1, 60 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠)) |
62 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ (0...𝑠)) → (𝑏‘𝑠) ∈ 𝐵) |
63 | 41, 61, 62 | syl2anr 596 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑏‘𝑠) ∈ 𝐵) |
64 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) |
65 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 1 ∈
ℕ0) |
66 | 64, 65 | nn0addcld 12227 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑠 + 1) ∈
ℕ0) |
67 | 63, 66 | jca 511 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
68 | 67 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
69 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 21797 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0)) →
(((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
70 | 59, 39, 68, 69 | syl21anc 834 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
71 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑖 + 1) = (((𝑠 − 1) + 1) + 1)) |
72 | 71 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → ((𝑖 + 1) ↑ 𝑋) = ((((𝑠 − 1) + 1) + 1) ↑ 𝑋)) |
73 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) |
74 | 72, 73 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑖 = ((𝑠 − 1) + 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1))))) |
75 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → ((𝑠 − 1) + 1) = 𝑠) |
76 | 75 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (((𝑠 − 1) + 1) + 1) = (𝑠 + 1)) |
77 | 76 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → ((((𝑠 − 1) + 1) + 1) ↑ 𝑋) = ((𝑠 + 1) ↑ 𝑋)) |
78 | 75 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏‘((𝑠 − 1) + 1)) = (𝑏‘𝑠)) |
79 | 78 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → (𝑇‘(𝑏‘((𝑠 − 1) + 1))) = (𝑇‘(𝑏‘𝑠))) |
80 | 77, 79 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ →
(((((𝑠 − 1) + 1) + 1)
↑
𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
81 | 80 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
82 | 74, 81 | sylan9eqr 2801 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 = ((𝑠 − 1) + 1)) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
83 | 25, 57, 58, 70, 82 | gsumsnd 19468 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
84 | 83 | oveq2d 7271 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
85 | 24, 54, 84 | 3eqtrd 2782 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
86 | 1 | ad2antrl 724 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ ℕ0) |
87 | 4, 5 | pmatlmod 21750 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
88 | 28, 87 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
89 | 88 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
90 | 89 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ LMod) |
91 | 90 | adantr 480 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod) |
92 | 4 | ply1ring 21329 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
93 | 27, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
94 | 93 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
95 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
96 | 95 | ringmgp 19704 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
97 | 94, 96 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
98 | 97 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (mulGrp‘𝑃) ∈ Mnd) |
99 | 98 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
100 | | elfznn0 13278 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) |
101 | 100 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0) |
102 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
103 | 7, 4, 102 | vr1cl 21298 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
104 | 27, 103 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
105 | 104 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
106 | 105 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑋 ∈ (Base‘𝑃)) |
107 | 106 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
108 | 95, 102 | mgpbas 19641 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
109 | 108, 8 | mulgnn0cl 18635 |
. . . . . . . 8
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑖 ∈
ℕ0 ∧ 𝑋
∈ (Base‘𝑃))
→ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
110 | 99, 101, 107, 109 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
111 | 4 | ply1crng 21279 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
112 | 111 | anim2i 616 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
113 | 112 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
114 | 5 | matsca2 21477 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
115 | 113, 114 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
116 | 115 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
117 | 116 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
118 | 117 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
119 | 118 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
120 | 119 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
121 | 110, 120 | mpbird 256 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
122 | 31 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ Ring) |
123 | 122 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring) |
124 | | simpll1 1210 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) |
125 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring) |
126 | | simpll3 1212 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑀 ∈ 𝐵) |
127 | 6, 2, 3, 4, 5 | mat2pmatbas 21783 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
128 | 124, 125,
126, 127 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
129 | 86 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0) |
130 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) |
131 | 130 | anim1i 614 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
132 | 2, 3, 4, 5, 6 | m2pmfzmap 21804 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
133 | 124, 125,
129, 131, 132 | syl31anc 1371 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
134 | 25, 10 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
135 | 123, 128,
133, 134 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
136 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
137 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
138 | 25, 136, 9, 137 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑌 ∈ LMod ∧ (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
139 | 91, 121, 135, 138 | syl3anc 1369 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
140 | 25, 26, 34, 86, 139 | gsummptfzsplitl 19449 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
141 | | 0nn0 12178 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
142 | 141 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 0 ∈
ℕ0) |
143 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘(mulGrp‘𝑃)) =
(0g‘(mulGrp‘𝑃)) |
144 | 108, 143,
8 | mulg0 18622 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
145 | 105, 144 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
146 | 145 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
147 | 146 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
148 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑃) = (1r‘𝑃) |
149 | 95, 148 | ringidval 19654 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
150 | 149 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (1r‘𝑃) =
(0g‘(mulGrp‘𝑃))) |
151 | 150 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) →
(0g‘(mulGrp‘𝑃)) = (1r‘𝑃)) |
152 | 151 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) →
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
153 | 115 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑃 = (Scalar‘𝑌)) |
154 | 153 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (1r‘𝑃) =
(1r‘(Scalar‘𝑌))) |
155 | 154 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
156 | 27, 127 | syl3an2 1162 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
157 | 156 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
158 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 𝑏:(0...𝑠)⟶𝐵) |
159 | | elnn0uz 12552 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈
(ℤ≥‘0)) |
160 | 1, 159 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
(ℤ≥‘0)) |
161 | | eluzfz1 13192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑠)) |
162 | 160, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → 0 ∈
(0...𝑠)) |
163 | 162 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 0 ∈ (0...𝑠)) |
164 | 158, 163 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → (𝑏‘0) ∈ 𝐵) |
165 | 164 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏:(0...𝑠)⟶𝐵 → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
166 | 41, 165 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
167 | 166 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑏‘0) ∈ 𝐵) |
168 | 167 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵) |
169 | 6, 2, 3, 4, 5 | mat2pmatbas 21783 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
170 | 59, 39, 168, 169 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
171 | 25, 10 | ringcl 19715 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
172 | 122, 157,
170, 171 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
173 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(1r‘(Scalar‘𝑌)) =
(1r‘(Scalar‘𝑌)) |
174 | 25, 136, 9, 173 | lmodvs1 20066 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ LMod ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
175 | 90, 172, 174 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
176 | 155, 175 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
177 | 147, 152,
176 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
178 | 177, 172 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌)) |
179 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑖 ↑ 𝑋) = (0 ↑ 𝑋)) |
180 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘0))) |
181 | 180 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
182 | 179, 181 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
183 | 182 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 = 0) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
184 | 25, 57, 142, 178, 183 | gsumsnd 19468 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
185 | 108, 149,
8 | mulg0 18622 |
. . . . . . . . 9
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
186 | 105, 185 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (1r‘𝑃)) |
187 | 186 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0 ↑ 𝑋) = (1r‘𝑃)) |
188 | 187 | oveq1d 7270 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
189 | 184, 188,
176 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
190 | 189 | oveq2d 7271 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
191 | 140, 190 | eqtrd 2778 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
192 | 85, 191 | oveq12d 7273 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
193 | | fzfid 13621 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0...(𝑠 − 1)) ∈ Fin) |
194 | | simpll1 1210 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑁 ∈ Fin) |
195 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑅 ∈ Ring) |
196 | 41 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) |
197 | 196 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑏:(0...𝑠)⟶𝐵) |
198 | | nnz 12272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℤ) |
199 | | fzoval 13317 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℤ →
(0..^𝑠) = (0...(𝑠 − 1))) |
200 | 198, 199 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ →
(0..^𝑠) = (0...(𝑠 − 1))) |
201 | 200 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℕ →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
202 | 201 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) ↔ 𝑖 ∈ (0..^𝑠))) |
203 | | elfzofz 13331 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑠) → 𝑖 ∈ (0...𝑠)) |
204 | 202, 203 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
205 | 204 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
206 | 205 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ (0...𝑠)) |
207 | 197, 206 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
208 | 207 | adantll 710 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
209 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ ℕ0) |
210 | 209 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ ℕ0) |
211 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 1 ∈
ℕ0) |
212 | 210, 211 | nn0addcld 12227 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑖 + 1) ∈
ℕ0) |
213 | 194, 195,
208, 212, 52 | syl22anc 835 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
214 | 213 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 − 1))(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
215 | 25, 34, 193, 214 | gsummptcl 19483 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
216 | 25, 26 | cmncom 19318 |
. . . . 5
⊢ ((𝑌 ∈ CMnd ∧ (𝑌 Σg
(𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
217 | 34, 215, 70, 216 | syl3anc 1369 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
218 | 217 | oveq1d 7270 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
219 | | ringgrp 19703 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
220 | 31, 219 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Grp) |
221 | 220 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ Grp) |
222 | | fzfid 13621 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (1...𝑠) ∈ Fin) |
223 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ LMod) |
224 | 98 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
225 | | elfznn 13214 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ) |
226 | 225 | nnnn0d 12223 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0) |
227 | 226 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0) |
228 | 106 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
229 | 224, 227,
228, 109 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
230 | 115 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
231 | 230 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
232 | 231 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
233 | 229, 232 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
234 | 122 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) |
235 | 157 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
236 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑁 ∈ Fin) |
237 | 39 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑅 ∈ Ring) |
238 | 196 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) |
239 | 238 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
240 | | 1eluzge0 12561 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
241 | | fzss1 13224 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑠) ⊆ (0...𝑠)) |
242 | 240, 241 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ →
(1...𝑠) ⊆ (0...𝑠)) |
243 | 242 | sseld 3916 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
244 | 243 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
245 | 244 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (0...𝑠)) |
246 | 239, 245 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘𝑖) ∈ 𝐵) |
247 | 6, 2, 3, 4, 5 | mat2pmatbas 21783 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝑖) ∈ 𝐵) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
248 | 236, 237,
246, 247 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
249 | 234, 235,
248, 134 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
250 | 223, 233,
249, 138 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
251 | 250 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
252 | 25, 34, 222, 251 | gsummptcl 19483 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
253 | | cpmadugsum.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
254 | 25, 26, 253 | grpaddsubass 18580 |
. . . . . . 7
⊢ ((𝑌 ∈ Grp ∧ ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
255 | 221, 70, 215, 252, 254 | syl13anc 1370 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
256 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → (𝑥 − 1) = (𝑖 − 1)) |
257 | 256 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → ((𝑥 − 1) + 1) = ((𝑖 − 1) + 1)) |
258 | 257 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (((𝑥 − 1) + 1) ↑ 𝑋) = (((𝑖 − 1) + 1) ↑ 𝑋)) |
259 | 256 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (𝑏‘(𝑥 − 1)) = (𝑏‘(𝑖 − 1))) |
260 | 259 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑇‘(𝑏‘(𝑥 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1)))) |
261 | 258, 260 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))) = ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
262 | 261 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
263 | 225 | nncnd 11919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ) |
264 | 263 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℂ) |
265 | | npcan1 11330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℂ → ((𝑖 − 1) + 1) = 𝑖) |
266 | 264, 265 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 − 1) + 1) = 𝑖) |
267 | 266 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 − 1) + 1) ↑ 𝑋) = (𝑖 ↑ 𝑋)) |
268 | 267 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) = ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
269 | 268 | mpteq2dva 5170 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
270 | 262, 269 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
271 | 270 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
272 | 271 | ad2antrl 724 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
273 | 272 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
274 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑌) = (0g‘𝑌) |
275 | | 1zzd 12281 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 1 ∈
ℤ) |
276 | | 0zd 12261 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 0 ∈
ℤ) |
277 | 36 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑠 − 1) ∈ ℤ) |
278 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑥 − 1) → (𝑖 + 1) = ((𝑥 − 1) + 1)) |
279 | 278 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → ((𝑖 + 1) ↑ 𝑋) = (((𝑥 − 1) + 1) ↑ 𝑋)) |
280 | | 2fveq3 6761 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘(𝑥 − 1)))) |
281 | 279, 280 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑥 − 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) |
282 | 25, 274, 34, 275, 276, 277, 213, 281 | gsummptshft 19452 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
283 | | 0p1e1 12025 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
284 | 283 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0 + 1) = 1) |
285 | 75 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑠 − 1) + 1) = 𝑠) |
286 | 284, 285 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((0 + 1)...((𝑠 − 1) + 1)) = (1...𝑠)) |
287 | 286 | mpteq1d 5165 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) |
288 | 287 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
289 | 282, 288 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
290 | 289 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
291 | | ringabl 19734 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Abel) |
292 | 31, 291 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Abel) |
293 | 292 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ Abel) |
294 | 225 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ) |
295 | | nnz 12272 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℤ) |
296 | | elfzm1b 13263 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
297 | 295, 198,
296 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
298 | 200 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0..^𝑠) = (0...(𝑠 − 1))) |
299 | 298 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
300 | 299 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) ↔ (𝑖 − 1) ∈ (0..^𝑠))) |
301 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 − 1) ∈ (0..^𝑠) → (𝑖 − 1) ∈ (0...𝑠)) |
302 | 300, 301 | syl6bi 252 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) → (𝑖 − 1) ∈ (0...𝑠))) |
303 | 297, 302 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
304 | 303 | expimpd 453 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))) |
305 | 294, 304 | mpcom 38 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
306 | 305 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
307 | 306 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
308 | 307 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
309 | 239, 308 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵) |
310 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 21797 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘(𝑖 − 1)) ∈ 𝐵 ∧ 𝑖 ∈ ℕ0)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
311 | 236, 237,
309, 227, 310 | syl22anc 835 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
312 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
313 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) |
314 | 25, 253, 293, 222, 311, 250, 312, 313 | gsummptfidmsub 19466 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
315 | 273, 290,
314 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
316 | 315 | oveq2d 7271 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
317 | 221 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Grp) |
318 | 25, 253 | grpsubcl 18570 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Grp ∧ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌) ∧ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
319 | 317, 311,
250, 318 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
320 | 319 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)(((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
321 | 25, 34, 222, 320 | gsummptcl 19483 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) |
322 | 25, 26 | cmncom 19318 |
. . . . . . 7
⊢ ((𝑌 ∈ CMnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
323 | 34, 70, 321, 322 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
324 | 255, 316,
323 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
325 | 324 | oveq1d 7270 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
326 | 25, 26 | mndcl 18308 |
. . . . . 6
⊢ ((𝑌 ∈ Mnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
327 | 57, 70, 215, 326 | syl3anc 1369 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
328 | 25, 26, 253, 293, 327, 252, 172 | ablsubsub4 19335 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
329 | 25, 26, 253 | grpaddsubass 18580 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ ((𝑌 Σg
(𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
330 | 221, 321,
70, 172, 329 | syl13anc 1370 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
331 | 325, 328,
330 | 3eqtr3d 2786 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
332 | 6, 2, 3, 4, 5 | mat2pmatbas 21783 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
333 | 236, 237,
309, 332 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
334 | 25, 9, 136, 137, 253, 223, 233, 333, 249 | lmodsubdi 20095 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
335 | 334 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
336 | 335 | mpteq2dva 5170 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
337 | 336 | oveq2d 7271 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
338 | 337 | oveq1d 7270 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
339 | 218, 331,
338 | 3eqtrd 2782 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
340 | 16, 192, 339 | 3eqtrd 2782 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |