Step | Hyp | Ref
| Expression |
1 | | nnnn0 11501 |
. . . 4
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
2 | | cpmadugsum.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | cpmadugsum.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
4 | | cpmadugsum.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | cpmadugsum.y |
. . . . 5
⊢ 𝑌 = (𝑁 Mat 𝑃) |
6 | | cpmadugsum.t |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
7 | | cpmadugsum.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
8 | | cpmadugsum.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
9 | | cpmadugsum.m |
. . . . 5
⊢ · = (
·𝑠 ‘𝑌) |
10 | | cpmadugsum.r |
. . . . 5
⊢ × =
(.r‘𝑌) |
11 | | cpmadugsum.1 |
. . . . 5
⊢ 1 =
(1r‘𝑌) |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemB 20899 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
13 | 1, 12 | sylanr1 661 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemC 20900 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
15 | 1, 14 | sylanr1 661 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
16 | 13, 15 | oveq12d 6811 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
17 | | nncn 11230 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℂ) |
18 | | npcan1 10657 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℂ → ((𝑠 − 1) + 1) = 𝑠) |
19 | 18 | eqcomd 2777 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ → 𝑠 = ((𝑠 − 1) + 1)) |
20 | 17, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ → 𝑠 = ((𝑠 − 1) + 1)) |
21 | 20 | oveq2d 6809 |
. . . . . . 7
⊢ (𝑠 ∈ ℕ →
(0...𝑠) = (0...((𝑠 − 1) +
1))) |
22 | 21 | mpteq1d 4872 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
23 | 22 | oveq2d 6809 |
. . . . 5
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
24 | 23 | ad2antrl 707 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
25 | | eqid 2771 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
26 | | cpmadugsum.g |
. . . . 5
⊢ + =
(+g‘𝑌) |
27 | | crngring 18766 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
28 | 27 | anim2i 603 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
29 | 28 | 3adant3 1126 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
30 | 4, 5 | pmatring 20718 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
32 | | ringcmn 18789 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
34 | 33 | adantr 466 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ CMnd) |
35 | | nnm1nn0 11536 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑠 − 1) ∈
ℕ0) |
36 | 35 | ad2antrl 707 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑠 − 1) ∈
ℕ0) |
37 | | simpll1 1254 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑁 ∈ Fin) |
38 | 27 | 3ad2ant2 1128 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
39 | 38 | adantr 466 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑅 ∈ Ring) |
40 | 39 | adantr 466 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑅 ∈ Ring) |
41 | | elmapi 8031 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
42 | 21 | feq2d 6171 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏:(0...𝑠)⟶𝐵 ↔ 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
43 | 41, 42 | syl5ibcom 235 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → (𝑠 ∈ ℕ → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
44 | 43 | impcom 394 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
45 | 44 | adantl 467 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
46 | 45 | ffvelrnda 6502 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑏‘𝑖) ∈ 𝐵) |
47 | | elfznn0 12640 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...((𝑠 − 1) + 1)) → 𝑖 ∈
ℕ0) |
48 | 47 | adantl 467 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑖 ∈ ℕ0) |
49 | | 1nn0 11510 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 1 ∈
ℕ0) |
51 | 48, 50 | nn0addcld 11557 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑖 + 1) ∈
ℕ0) |
52 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20765 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑖) ∈ 𝐵 ∧ (𝑖 + 1) ∈ ℕ0)) →
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
53 | 37, 40, 46, 51, 52 | syl22anc 1477 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
54 | 25, 26, 34, 36, 53 | gsummptfzsplit 18539 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
55 | | ringmnd 18764 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
56 | 31, 55 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Mnd) |
57 | 56 | adantr 466 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Mnd) |
58 | | ovexd 6825 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑠 − 1) + 1) ∈ V) |
59 | | simpl1 1227 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑁 ∈ Fin) |
60 | | nn0fz0 12645 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈ (0...𝑠)) |
61 | 1, 60 | sylib 208 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠)) |
62 | | ffvelrn 6500 |
. . . . . . . . . 10
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ (0...𝑠)) → (𝑏‘𝑠) ∈ 𝐵) |
63 | 41, 61, 62 | syl2anr 584 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑏‘𝑠) ∈ 𝐵) |
64 | 1 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0) |
65 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 1 ∈
ℕ0) |
66 | 64, 65 | nn0addcld 11557 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑠 + 1) ∈
ℕ0) |
67 | 63, 66 | jca 501 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
68 | 67 | adantl 467 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
69 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20765 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0)) →
(((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
70 | 59, 39, 68, 69 | syl21anc 1475 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
71 | | oveq1 6800 |
. . . . . . . . 9
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑖 + 1) = (((𝑠 − 1) + 1) + 1)) |
72 | 71 | oveq1d 6808 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → ((𝑖 + 1) ↑ 𝑋) = ((((𝑠 − 1) + 1) + 1) ↑ 𝑋)) |
73 | | fveq2 6332 |
. . . . . . . . 9
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑏‘𝑖) = (𝑏‘((𝑠 − 1) + 1))) |
74 | 73 | fveq2d 6336 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) |
75 | 72, 74 | oveq12d 6811 |
. . . . . . 7
⊢ (𝑖 = ((𝑠 − 1) + 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1))))) |
76 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → ((𝑠 − 1) + 1) = 𝑠) |
77 | 76 | oveq1d 6808 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (((𝑠 − 1) + 1) + 1) = (𝑠 + 1)) |
78 | 77 | oveq1d 6808 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → ((((𝑠 − 1) + 1) + 1) ↑ 𝑋) = ((𝑠 + 1) ↑ 𝑋)) |
79 | 76 | fveq2d 6336 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏‘((𝑠 − 1) + 1)) = (𝑏‘𝑠)) |
80 | 79 | fveq2d 6336 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → (𝑇‘(𝑏‘((𝑠 − 1) + 1))) = (𝑇‘(𝑏‘𝑠))) |
81 | 78, 80 | oveq12d 6811 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ →
(((((𝑠 − 1) + 1) + 1)
↑
𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
82 | 81 | ad2antrl 707 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
83 | 75, 82 | sylan9eqr 2827 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 = ((𝑠 − 1) + 1)) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
84 | 25, 57, 58, 70, 83 | gsumsnd 18559 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
85 | 84 | oveq2d 6809 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
86 | 24, 54, 85 | 3eqtrd 2809 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
87 | 1 | ad2antrl 707 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑠 ∈ ℕ0) |
88 | 4, 5 | pmatlmod 20719 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
89 | 28, 88 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
90 | 89 | 3adant3 1126 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
91 | 90 | adantr 466 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ LMod) |
92 | 91 | adantr 466 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod) |
93 | 4 | ply1ring 19833 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
94 | 27, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
95 | 94 | 3ad2ant2 1128 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
96 | | eqid 2771 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
97 | 96 | ringmgp 18761 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
98 | 95, 97 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
99 | 98 | adantr 466 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (mulGrp‘𝑃) ∈ Mnd) |
100 | 99 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
101 | | elfznn0 12640 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) |
102 | 101 | adantl 467 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0) |
103 | | eqid 2771 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
104 | 7, 4, 103 | vr1cl 19802 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
105 | 27, 104 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
106 | 105 | 3ad2ant2 1128 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
107 | 106 | adantr 466 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑋 ∈ (Base‘𝑃)) |
108 | 107 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
109 | 96, 103 | mgpbas 18703 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
110 | 109, 8 | mulgnn0cl 17766 |
. . . . . . . 8
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑖 ∈
ℕ0 ∧ 𝑋
∈ (Base‘𝑃))
→ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
111 | 100, 102,
108, 110 | syl3anc 1476 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
112 | 4 | ply1crng 19783 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
113 | 112 | anim2i 603 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
114 | 113 | 3adant3 1126 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
115 | 5 | matsca2 20443 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
116 | 114, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
117 | 116 | eqcomd 2777 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
118 | 117 | fveq2d 6336 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
119 | 118 | eleq2d 2836 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
120 | 119 | adantr 466 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
121 | 120 | adantr 466 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
122 | 111, 121 | mpbird 247 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
123 | 31 | adantr 466 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Ring) |
124 | 123 | adantr 466 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring) |
125 | | simpll1 1254 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) |
126 | 39 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring) |
127 | | simpll3 1258 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑀 ∈ 𝐵) |
128 | 6, 2, 3, 4, 5 | mat2pmatbas 20751 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
129 | 125, 126,
127, 128 | syl3anc 1476 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
130 | 87 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0) |
131 | | simprr 756 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) |
132 | 131 | anim1i 602 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
133 | 2, 3, 4, 5, 6 | m2pmfzmap 20772 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑𝑚
(0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
134 | 125, 126,
130, 132, 133 | syl31anc 1479 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
135 | 25, 10 | ringcl 18769 |
. . . . . . 7
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
136 | 124, 129,
134, 135 | syl3anc 1476 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
137 | | eqid 2771 |
. . . . . . 7
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
138 | | eqid 2771 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
139 | 25, 137, 9, 138 | lmodvscl 19090 |
. . . . . 6
⊢ ((𝑌 ∈ LMod ∧ (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
140 | 92, 122, 136, 139 | syl3anc 1476 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
141 | 25, 26, 34, 87, 140 | gsummptfzsplitl 18540 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
142 | | 0nn0 11509 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
143 | 142 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 0 ∈
ℕ0) |
144 | | eqid 2771 |
. . . . . . . . . . . . 13
⊢
(0g‘(mulGrp‘𝑃)) =
(0g‘(mulGrp‘𝑃)) |
145 | 109, 144,
8 | mulg0 17754 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
146 | 106, 145 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
147 | 146 | adantr 466 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 ↑ 𝑋) =
(0g‘(mulGrp‘𝑃))) |
148 | 147 | oveq1d 6808 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
149 | | eqid 2771 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑃) = (1r‘𝑃) |
150 | 96, 149 | ringidval 18711 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
151 | 150 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(1r‘𝑃) =
(0g‘(mulGrp‘𝑃))) |
152 | 151 | eqcomd 2777 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(0g‘(mulGrp‘𝑃)) = (1r‘𝑃)) |
153 | 152 | oveq1d 6808 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
154 | 116 | adantr 466 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑃 = (Scalar‘𝑌)) |
155 | 154 | fveq2d 6336 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(1r‘𝑃) =
(1r‘(Scalar‘𝑌))) |
156 | 155 | oveq1d 6808 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘𝑃)
·
((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
157 | 27, 128 | syl3an2 1167 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
158 | 157 | adantr 466 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
159 | | simpl 468 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 𝑏:(0...𝑠)⟶𝐵) |
160 | | elnn0uz 11927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈
(ℤ≥‘0)) |
161 | 1, 160 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
(ℤ≥‘0)) |
162 | | eluzfz1 12555 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑠)) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → 0 ∈
(0...𝑠)) |
164 | 163 | adantl 467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 0 ∈ (0...𝑠)) |
165 | 159, 164 | ffvelrnd 6503 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → (𝑏‘0) ∈ 𝐵) |
166 | 165 | ex 397 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏:(0...𝑠)⟶𝐵 → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
167 | 41, 166 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
168 | 167 | impcom 394 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑏‘0) ∈ 𝐵) |
169 | 168 | adantl 467 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑏‘0) ∈ 𝐵) |
170 | 6, 2, 3, 4, 5 | mat2pmatbas 20751 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
171 | 59, 39, 169, 170 | syl3anc 1476 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
172 | 25, 10 | ringcl 18769 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
173 | 123, 158,
171, 172 | syl3anc 1476 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
174 | | eqid 2771 |
. . . . . . . . . . . 12
⊢
(1r‘(Scalar‘𝑌)) =
(1r‘(Scalar‘𝑌)) |
175 | 25, 137, 9, 174 | lmodvs1 19101 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ LMod ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
176 | 91, 173, 175 | syl2anc 573 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
177 | 156, 176 | eqtrd 2805 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘𝑃)
·
((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
178 | 148, 153,
177 | 3eqtrd 2809 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
179 | 178, 173 | eqeltrd 2850 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌)) |
180 | | oveq1 6800 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑖 ↑ 𝑋) = (0 ↑ 𝑋)) |
181 | | fveq2 6332 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝑏‘𝑖) = (𝑏‘0)) |
182 | 181 | fveq2d 6336 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘0))) |
183 | 182 | oveq2d 6809 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
184 | 180, 183 | oveq12d 6811 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
185 | 184 | adantl 467 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 = 0) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
186 | 25, 57, 143, 179, 185 | gsumsnd 18559 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
187 | 109, 150,
8 | mulg0 17754 |
. . . . . . . . 9
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
188 | 106, 187 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (1r‘𝑃)) |
189 | 188 | adantr 466 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 ↑ 𝑋) = (1r‘𝑃)) |
190 | 189 | oveq1d 6808 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
191 | 186, 190,
177 | 3eqtrd 2809 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
192 | 191 | oveq2d 6809 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
193 | 141, 192 | eqtrd 2805 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
194 | 86, 193 | oveq12d 6811 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
195 | | fzfid 12980 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0...(𝑠 − 1)) ∈
Fin) |
196 | | simpll1 1254 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑁 ∈ Fin) |
197 | 39 | adantr 466 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑅 ∈ Ring) |
198 | 41 | adantl 467 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) |
199 | 198 | adantr 466 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑏:(0...𝑠)⟶𝐵) |
200 | | nnz 11601 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℤ) |
201 | | fzoval 12679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℤ →
(0..^𝑠) = (0...(𝑠 − 1))) |
202 | 200, 201 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ →
(0..^𝑠) = (0...(𝑠 − 1))) |
203 | 202 | eqcomd 2777 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℕ →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
204 | 203 | eleq2d 2836 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) ↔ 𝑖 ∈ (0..^𝑠))) |
205 | | elfzofz 12693 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑠) → 𝑖 ∈ (0...𝑠)) |
206 | 204, 205 | syl6bi 243 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
207 | 206 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
208 | 207 | imp 393 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ (0...𝑠)) |
209 | 199, 208 | ffvelrnd 6503 |
. . . . . . . . 9
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
210 | 209 | adantll 693 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
211 | | elfznn0 12640 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ ℕ0) |
212 | 211 | adantl 467 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ ℕ0) |
213 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 1 ∈
ℕ0) |
214 | 212, 213 | nn0addcld 11557 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑖 + 1) ∈
ℕ0) |
215 | 196, 197,
210, 214, 52 | syl22anc 1477 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
216 | 215 | ralrimiva 3115 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 − 1))(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
217 | 25, 34, 195, 216 | gsummptcl 18573 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
218 | 25, 26 | cmncom 18416 |
. . . . 5
⊢ ((𝑌 ∈ CMnd ∧ (𝑌 Σg
(𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
219 | 34, 217, 70, 218 | syl3anc 1476 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
220 | 219 | oveq1d 6808 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
221 | | ringgrp 18760 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
222 | 31, 221 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Grp) |
223 | 222 | adantr 466 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Grp) |
224 | | fzfid 12980 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (1...𝑠) ∈ Fin) |
225 | 91 | adantr 466 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ LMod) |
226 | 99 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
227 | | elfznn 12577 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ) |
228 | 227 | nnnn0d 11553 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0) |
229 | 228 | adantl 467 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0) |
230 | 107 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
231 | 226, 229,
230, 110 | syl3anc 1476 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
232 | 116 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
233 | 232 | adantr 466 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (Base‘𝑃) =
(Base‘(Scalar‘𝑌))) |
234 | 233 | adantr 466 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
235 | 231, 234 | eleqtrd 2852 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
236 | 123 | adantr 466 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) |
237 | 158 | adantr 466 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
238 | | simpll1 1254 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑁 ∈ Fin) |
239 | 39 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑅 ∈ Ring) |
240 | 198 | adantl 467 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) |
241 | 240 | adantr 466 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
242 | | 1eluzge0 11934 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
243 | | fzss1 12587 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑠) ⊆ (0...𝑠)) |
244 | 242, 243 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ →
(1...𝑠) ⊆ (0...𝑠)) |
245 | 244 | sseld 3751 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
246 | 245 | ad2antrl 707 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
247 | 246 | imp 393 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (0...𝑠)) |
248 | 241, 247 | ffvelrnd 6503 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘𝑖) ∈ 𝐵) |
249 | 6, 2, 3, 4, 5 | mat2pmatbas 20751 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝑖) ∈ 𝐵) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
250 | 238, 239,
248, 249 | syl3anc 1476 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
251 | 236, 237,
250, 135 | syl3anc 1476 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
252 | 225, 235,
251, 139 | syl3anc 1476 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
253 | 252 | ralrimiva 3115 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
254 | 25, 34, 224, 253 | gsummptcl 18573 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
255 | | cpmadugsum.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
256 | 25, 26, 255 | grpaddsubass 17713 |
. . . . . . 7
⊢ ((𝑌 ∈ Grp ∧ ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
257 | 223, 70, 217, 254, 256 | syl13anc 1478 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
258 | | oveq1 6800 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → (𝑥 − 1) = (𝑖 − 1)) |
259 | 258 | oveq1d 6808 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → ((𝑥 − 1) + 1) = ((𝑖 − 1) + 1)) |
260 | 259 | oveq1d 6808 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (((𝑥 − 1) + 1) ↑ 𝑋) = (((𝑖 − 1) + 1) ↑ 𝑋)) |
261 | 258 | fveq2d 6336 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (𝑏‘(𝑥 − 1)) = (𝑏‘(𝑖 − 1))) |
262 | 261 | fveq2d 6336 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑇‘(𝑏‘(𝑥 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1)))) |
263 | 260, 262 | oveq12d 6811 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))) = ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
264 | 263 | cbvmptv 4884 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
265 | 227 | nncnd 11238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ) |
266 | 265 | adantl 467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℂ) |
267 | | npcan1 10657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℂ → ((𝑖 − 1) + 1) = 𝑖) |
268 | 266, 267 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 − 1) + 1) = 𝑖) |
269 | 268 | oveq1d 6808 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 − 1) + 1) ↑ 𝑋) = (𝑖 ↑ 𝑋)) |
270 | 269 | oveq1d 6808 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) = ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
271 | 270 | mpteq2dva 4878 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
272 | 264, 271 | syl5eq 2817 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
273 | 272 | oveq2d 6809 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
274 | 273 | ad2antrl 707 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
275 | 274 | oveq1d 6808 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
276 | | eqid 2771 |
. . . . . . . . . . 11
⊢
(0g‘𝑌) = (0g‘𝑌) |
277 | | 1zzd 11610 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 1 ∈
ℤ) |
278 | | 0zd 11591 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 0 ∈
ℤ) |
279 | 36 | nn0zd 11682 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑠 − 1) ∈ ℤ) |
280 | | oveq1 6800 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑥 − 1) → (𝑖 + 1) = ((𝑥 − 1) + 1)) |
281 | 280 | oveq1d 6808 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → ((𝑖 + 1) ↑ 𝑋) = (((𝑥 − 1) + 1) ↑ 𝑋)) |
282 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑥 − 1) → (𝑏‘𝑖) = (𝑏‘(𝑥 − 1))) |
283 | 282 | fveq2d 6336 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘(𝑥 − 1)))) |
284 | 281, 283 | oveq12d 6811 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑥 − 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) |
285 | 25, 276, 34, 277, 278, 279, 215, 284 | gsummptshft 18543 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
286 | | 0p1e1 11334 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
287 | 286 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 + 1) =
1) |
288 | 76 | ad2antrl 707 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑠 − 1) + 1) = 𝑠) |
289 | 287, 288 | oveq12d 6811 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 + 1)...((𝑠 − 1) + 1)) = (1...𝑠)) |
290 | 289 | mpteq1d 4872 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) |
291 | 290 | oveq2d 6809 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
292 | 285, 291 | eqtrd 2805 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
293 | 292 | oveq1d 6808 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
294 | | ringabl 18788 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Abel) |
295 | 31, 294 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Abel) |
296 | 295 | adantr 466 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Abel) |
297 | 227 | adantl 467 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ) |
298 | | nnz 11601 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℤ) |
299 | | elfzm1b 12625 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
300 | 298, 200,
299 | syl2an 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
301 | 202 | adantl 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0..^𝑠) = (0...(𝑠 − 1))) |
302 | 301 | eqcomd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
303 | 302 | eleq2d 2836 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) ↔ (𝑖 − 1) ∈ (0..^𝑠))) |
304 | | elfzofz 12693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 − 1) ∈ (0..^𝑠) → (𝑖 − 1) ∈ (0...𝑠)) |
305 | 303, 304 | syl6bi 243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) → (𝑖 − 1) ∈ (0...𝑠))) |
306 | 300, 305 | sylbid 230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
307 | 306 | expimpd 441 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))) |
308 | 297, 307 | mpcom 38 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
309 | 308 | ex 397 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
310 | 309 | ad2antrl 707 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
311 | 310 | imp 393 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
312 | 241, 311 | ffvelrnd 6503 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵) |
313 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20765 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘(𝑖 − 1)) ∈ 𝐵 ∧ 𝑖 ∈ ℕ0)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
314 | 238, 239,
312, 229, 313 | syl22anc 1477 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
315 | | eqid 2771 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
316 | | eqid 2771 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) |
317 | 25, 255, 296, 224, 314, 252, 315, 316 | gsummptfidmsub 18557 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
318 | 275, 293,
317 | 3eqtr4d 2815 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
319 | 318 | oveq2d 6809 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
320 | 223 | adantr 466 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Grp) |
321 | 25, 255 | grpsubcl 17703 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Grp ∧ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌) ∧ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
322 | 320, 314,
252, 321 | syl3anc 1476 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
323 | 322 | ralrimiva 3115 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)(((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
324 | 25, 34, 224, 323 | gsummptcl 18573 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) |
325 | 25, 26 | cmncom 18416 |
. . . . . . 7
⊢ ((𝑌 ∈ CMnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
326 | 34, 70, 324, 325 | syl3anc 1476 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
327 | 257, 319,
326 | 3eqtrd 2809 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
328 | 327 | oveq1d 6808 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
329 | 25, 26 | mndcl 17509 |
. . . . . 6
⊢ ((𝑌 ∈ Mnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
330 | 57, 70, 217, 329 | syl3anc 1476 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
331 | 25, 26, 255, 296, 330, 254, 173 | ablsubsub4 18431 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
332 | 25, 26, 255 | grpaddsubass 17713 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ ((𝑌 Σg
(𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
333 | 223, 324,
70, 173, 332 | syl13anc 1478 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
334 | 328, 331,
333 | 3eqtr3d 2813 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
335 | 6, 2, 3, 4, 5 | mat2pmatbas 20751 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
336 | 238, 239,
312, 335 | syl3anc 1476 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
337 | 25, 9, 137, 138, 255, 225, 235, 336, 251 | lmodsubdi 19130 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
338 | 337 | eqcomd 2777 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
339 | 338 | mpteq2dva 4878 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
340 | 339 | oveq2d 6809 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
341 | 340 | oveq1d 6808 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
342 | 220, 334,
341 | 3eqtrd 2809 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
343 | 16, 194, 342 | 3eqtrd 2809 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |