MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemF Structured version   Visualization version   GIF version

Theorem cpmadugsumlemF 22770
Description: Lemma F for cpmadugsum 22772. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
cpmadugsum.g + = (+g𝑌)
cpmadugsum.s = (-g𝑌)
Assertion
Ref Expression
cpmadugsumlemF (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠   𝑇,𝑖   ,𝑖   ,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   + (𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemF
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12456 . . . 4 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
2 cpmadugsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 cpmadugsum.b . . . . 5 𝐵 = (Base‘𝐴)
4 cpmadugsum.p . . . . 5 𝑃 = (Poly1𝑅)
5 cpmadugsum.y . . . . 5 𝑌 = (𝑁 Mat 𝑃)
6 cpmadugsum.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 cpmadugsum.x . . . . 5 𝑋 = (var1𝑅)
8 cpmadugsum.e . . . . 5 = (.g‘(mulGrp‘𝑃))
9 cpmadugsum.m . . . . 5 · = ( ·𝑠𝑌)
10 cpmadugsum.r . . . . 5 × = (.r𝑌)
11 cpmadugsum.1 . . . . 5 1 = (1r𝑌)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cpmadugsumlemB 22768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
131, 12sylanr1 682 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
142, 3, 4, 5, 6, 7, 8, 9, 10, 11cpmadugsumlemC 22769 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
151, 14sylanr1 682 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
1613, 15oveq12d 7408 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
17 nncn 12201 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
18 npcan1 11610 . . . . . . . . . 10 (𝑠 ∈ ℂ → ((𝑠 − 1) + 1) = 𝑠)
1918eqcomd 2736 . . . . . . . . 9 (𝑠 ∈ ℂ → 𝑠 = ((𝑠 − 1) + 1))
2017, 19syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 = ((𝑠 − 1) + 1))
2120oveq2d 7406 . . . . . . 7 (𝑠 ∈ ℕ → (0...𝑠) = (0...((𝑠 − 1) + 1)))
2221mpteq1d 5200 . . . . . 6 (𝑠 ∈ ℕ → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))
2322oveq2d 7406 . . . . 5 (𝑠 ∈ ℕ → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
2423ad2antrl 728 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
25 eqid 2730 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 cpmadugsum.g . . . . 5 + = (+g𝑌)
27 crngring 20161 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 617 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
304, 5pmatring 22586 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringcmn 20198 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
3433adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ CMnd)
35 nnm1nn0 12490 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
3635ad2antrl 728 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 − 1) ∈ ℕ0)
37 simpll1 1213 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑁 ∈ Fin)
38273ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3938adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑅 ∈ Ring)
41 elmapi 8825 . . . . . . . . . 10 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
4221feq2d 6675 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑏:(0...𝑠)⟶𝐵𝑏:(0...((𝑠 − 1) + 1))⟶𝐵))
4341, 42syl5ibcom 245 . . . . . . . . 9 (𝑏 ∈ (𝐵m (0...𝑠)) → (𝑠 ∈ ℕ → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵))
4443impcom 407 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)
4544adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)
4645ffvelcdmda 7059 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑏𝑖) ∈ 𝐵)
47 elfznn0 13588 . . . . . . . 8 (𝑖 ∈ (0...((𝑠 − 1) + 1)) → 𝑖 ∈ ℕ0)
4847adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑖 ∈ ℕ0)
49 1nn0 12465 . . . . . . . 8 1 ∈ ℕ0
5049a1i 11 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 1 ∈ ℕ0)
5148, 50nn0addcld 12514 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑖 + 1) ∈ ℕ0)
522, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22634 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏𝑖) ∈ 𝐵 ∧ (𝑖 + 1) ∈ ℕ0)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
5337, 40, 46, 51, 52syl22anc 838 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
5425, 26, 34, 36, 53gsummptfzsplit 19869 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
55 ringmnd 20159 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
5631, 55syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
5756adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Mnd)
58 ovexd 7425 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 − 1) + 1) ∈ V)
59 simpl1 1192 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
60 nn0fz0 13593 . . . . . . . . . . 11 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
611, 60sylib 218 . . . . . . . . . 10 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
62 ffvelcdm 7056 . . . . . . . . . 10 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ (0...𝑠)) → (𝑏𝑠) ∈ 𝐵)
6341, 61, 62syl2anr 597 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏𝑠) ∈ 𝐵)
641adantr 480 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
6549a1i 11 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 1 ∈ ℕ0)
6664, 65nn0addcld 12514 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑠 + 1) ∈ ℕ0)
6763, 66jca 511 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0))
6867adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0))
692, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22634 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0)) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
7059, 39, 68, 69syl21anc 837 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
71 oveq1 7397 . . . . . . . . 9 (𝑖 = ((𝑠 − 1) + 1) → (𝑖 + 1) = (((𝑠 − 1) + 1) + 1))
7271oveq1d 7405 . . . . . . . 8 (𝑖 = ((𝑠 − 1) + 1) → ((𝑖 + 1) 𝑋) = ((((𝑠 − 1) + 1) + 1) 𝑋))
73 2fveq3 6866 . . . . . . . 8 (𝑖 = ((𝑠 − 1) + 1) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑠 − 1) + 1))))
7472, 73oveq12d 7408 . . . . . . 7 (𝑖 = ((𝑠 − 1) + 1) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))))
7517, 18syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → ((𝑠 − 1) + 1) = 𝑠)
7675oveq1d 7405 . . . . . . . . . 10 (𝑠 ∈ ℕ → (((𝑠 − 1) + 1) + 1) = (𝑠 + 1))
7776oveq1d 7405 . . . . . . . . 9 (𝑠 ∈ ℕ → ((((𝑠 − 1) + 1) + 1) 𝑋) = ((𝑠 + 1) 𝑋))
7875fveq2d 6865 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑏‘((𝑠 − 1) + 1)) = (𝑏𝑠))
7978fveq2d 6865 . . . . . . . . 9 (𝑠 ∈ ℕ → (𝑇‘(𝑏‘((𝑠 − 1) + 1))) = (𝑇‘(𝑏𝑠)))
8077, 79oveq12d 7408 . . . . . . . 8 (𝑠 ∈ ℕ → (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8180ad2antrl 728 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8274, 81sylan9eqr 2787 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 = ((𝑠 − 1) + 1)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8325, 57, 58, 70, 82gsumsnd 19889 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8483oveq2d 7406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
8524, 54, 843eqtrd 2769 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
861ad2antrl 728 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
874, 5pmatlmod 22587 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
8828, 87syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
89883adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
9089adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ LMod)
9190adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
92 eqid 2730 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
93 eqid 2730 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
9492, 93mgpbas 20061 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
954ply1ring 22139 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9627, 95syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
97963ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
9892ringmgp 20155 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
9997, 98syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
10099adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑃) ∈ Mnd)
101100adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
102 elfznn0 13588 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
103102adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
1047, 4, 93vr1cl 22109 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
10527, 104syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
1061053ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
107106adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑋 ∈ (Base‘𝑃))
108107adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
10994, 8, 101, 103, 108mulgnn0cld 19034 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
1104ply1crng 22090 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
111110anim2i 617 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1121113adant3 1132 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1135matsca2 22314 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
114112, 113syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
115114eqcomd 2736 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
116115fveq2d 6865 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
117116eleq2d 2815 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
118117adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
119118adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
120109, 119mpbird 257 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
12131adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
122121adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
123 simpll1 1213 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
12439adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
125 simpll3 1215 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑀𝐵)
1266, 2, 3, 4, 5mat2pmatbas 22620 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
127123, 124, 125, 126syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇𝑀) ∈ (Base‘𝑌))
12886adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
129 simprr 772 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
130129anim1i 615 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
1312, 3, 4, 5, 6m2pmfzmap 22641 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
132123, 124, 128, 130, 131syl31anc 1375 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
13325, 10ringcl 20166 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
134122, 127, 132, 133syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
135 eqid 2730 . . . . . . 7 (Scalar‘𝑌) = (Scalar‘𝑌)
136 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
13725, 135, 9, 136lmodvscl 20791 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
13891, 120, 134, 137syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
13925, 26, 34, 86, 138gsummptfzsplitl 19870 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
140 0nn0 12464 . . . . . . . 8 0 ∈ ℕ0
141140a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℕ0)
142 eqid 2730 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝑃)) = (0g‘(mulGrp‘𝑃))
14394, 142, 8mulg0 19013 . . . . . . . . . . . 12 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
144106, 143syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
145144adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
146145oveq1d 7405 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((0g‘(mulGrp‘𝑃)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
147 eqid 2730 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
14892, 147ringidval 20099 . . . . . . . . . . . 12 (1r𝑃) = (0g‘(mulGrp‘𝑃))
149148a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1r𝑃) = (0g‘(mulGrp‘𝑃)))
150149eqcomd 2736 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0g‘(mulGrp‘𝑃)) = (1r𝑃))
151150oveq1d 7405 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0g‘(mulGrp‘𝑃)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
152114adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑃 = (Scalar‘𝑌))
153152fveq2d 6865 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1r𝑃) = (1r‘(Scalar‘𝑌)))
154153oveq1d 7405 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
15527, 126syl3an2 1164 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
156155adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
157 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → 𝑏:(0...𝑠)⟶𝐵)
158 elnn0uz 12845 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ0𝑠 ∈ (ℤ‘0))
1591, 158sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
160 eluzfz1 13499 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
161159, 160syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
162161adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → 0 ∈ (0...𝑠))
163157, 162ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → (𝑏‘0) ∈ 𝐵)
164163ex 412 . . . . . . . . . . . . . . . 16 (𝑏:(0...𝑠)⟶𝐵 → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵))
16541, 164syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵m (0...𝑠)) → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵))
166165impcom 407 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
167166adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1686, 2, 3, 4, 5mat2pmatbas 22620 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
16959, 39, 167, 168syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
17025, 10ringcl 20166 . . . . . . . . . . . 12 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
171121, 156, 169, 170syl3anc 1373 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
172 eqid 2730 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
17325, 135, 9, 172lmodvs1 20803 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
17490, 171, 173syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
175154, 174eqtrd 2765 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
176146, 151, 1753eqtrd 2769 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
177176, 171eqeltrd 2829 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
178 oveq1 7397 . . . . . . . . 9 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
179 2fveq3 6866 . . . . . . . . . 10 (𝑖 = 0 → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘0)))
180179oveq2d 7406 . . . . . . . . 9 (𝑖 = 0 → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
181178, 180oveq12d 7408 . . . . . . . 8 (𝑖 = 0 → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
182181adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 = 0) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
18325, 57, 141, 177, 182gsumsnd 19889 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
18494, 148, 8mulg0 19013 . . . . . . . . 9 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
185106, 184syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r𝑃))
186185adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (1r𝑃))
187186oveq1d 7405 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
188183, 187, 1753eqtrd 2769 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
189188oveq2d 7406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
190139, 189eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
19185, 190oveq12d 7408 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
192 fzfid 13945 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0...(𝑠 − 1)) ∈ Fin)
193 simpll1 1213 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑁 ∈ Fin)
19439adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑅 ∈ Ring)
19541adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
196195adantr 480 . . . . . . . . . 10 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑏:(0...𝑠)⟶𝐵)
197 nnz 12557 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
198 fzoval 13628 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℤ → (0..^𝑠) = (0...(𝑠 − 1)))
199197, 198syl 17 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (0..^𝑠) = (0...(𝑠 − 1)))
200199eqcomd 2736 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (0...(𝑠 − 1)) = (0..^𝑠))
201200eleq2d 2815 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) ↔ 𝑖 ∈ (0..^𝑠)))
202 elfzofz 13643 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑠) → 𝑖 ∈ (0...𝑠))
203201, 202biimtrdi 253 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠)))
204203adantr 480 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠)))
205204imp 406 . . . . . . . . . 10 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ (0...𝑠))
206196, 205ffvelcdmd 7060 . . . . . . . . 9 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏𝑖) ∈ 𝐵)
207206adantll 714 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏𝑖) ∈ 𝐵)
208 elfznn0 13588 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ ℕ0)
209208adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ ℕ0)
21049a1i 11 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 1 ∈ ℕ0)
211209, 210nn0addcld 12514 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑖 + 1) ∈ ℕ0)
212193, 194, 207, 211, 52syl22anc 838 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
213212ralrimiva 3126 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 − 1))(((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
21425, 34, 192, 213gsummptcl 19904 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
21525, 26cmncom 19735 . . . . 5 ((𝑌 ∈ CMnd ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
21634, 214, 70, 215syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
217216oveq1d 7405 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
218 ringgrp 20154 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
21931, 218syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
220219adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
221 fzfid 13945 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1...𝑠) ∈ Fin)
22290adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ LMod)
223100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
224 elfznn 13521 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ)
225224nnnn0d 12510 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0)
226225adantl 481 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0)
227107adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑋 ∈ (Base‘𝑃))
22894, 8, 223, 226, 227mulgnn0cld 19034 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
229114fveq2d 6865 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
230229adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
231230adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
232228, 231eleqtrd 2831 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
233121adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring)
234156adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇𝑀) ∈ (Base‘𝑌))
235 simpll1 1213 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑁 ∈ Fin)
23639adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑅 ∈ Ring)
237195adantl 481 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
238237adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
239 1eluzge0 12846 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
240 fzss1 13531 . . . . . . . . . . . . . . . . 17 (1 ∈ (ℤ‘0) → (1...𝑠) ⊆ (0...𝑠))
241239, 240mp1i 13 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (1...𝑠) ⊆ (0...𝑠))
242241sseld 3948 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)))
243242ad2antrl 728 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)))
244243imp 406 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (0...𝑠))
245238, 244ffvelcdmd 7060 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) ∈ 𝐵)
2466, 2, 3, 4, 5mat2pmatbas 22620 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑖) ∈ 𝐵) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
247235, 236, 245, 246syl3anc 1373 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
248233, 234, 247, 133syl3anc 1373 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
249222, 232, 248, 137syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
250249ralrimiva 3126 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
25125, 34, 221, 250gsummptcl 19904 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
252 cpmadugsum.s . . . . . . . 8 = (-g𝑌)
25325, 26, 252grpaddsubass 18969 . . . . . . 7 ((𝑌 ∈ Grp ∧ ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
254220, 70, 214, 251, 253syl13anc 1374 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
255 oveq1 7397 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → (𝑥 − 1) = (𝑖 − 1))
256255oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → ((𝑥 − 1) + 1) = ((𝑖 − 1) + 1))
257256oveq1d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (((𝑥 − 1) + 1) 𝑋) = (((𝑖 − 1) + 1) 𝑋))
258255fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → (𝑏‘(𝑥 − 1)) = (𝑏‘(𝑖 − 1)))
259258fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑇‘(𝑏‘(𝑥 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
260257, 259oveq12d 7408 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))) = ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
261260cbvmptv 5214 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
262224nncnd 12209 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
263262adantl 481 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℂ)
264 npcan1 11610 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℂ → ((𝑖 − 1) + 1) = 𝑖)
265263, 264syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 − 1) + 1) = 𝑖)
266265oveq1d 7405 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 − 1) + 1) 𝑋) = (𝑖 𝑋))
267266oveq1d 7405 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) = ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
268267mpteq2dva 5203 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))
269261, 268eqtrid 2777 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))
270269oveq2d 7406 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))))
271270ad2antrl 728 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))))
272271oveq1d 7405 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
273 eqid 2730 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
274 1zzd 12571 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℤ)
275 0zd 12548 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℤ)
27636nn0zd 12562 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 − 1) ∈ ℤ)
277 oveq1 7397 . . . . . . . . . . . . 13 (𝑖 = (𝑥 − 1) → (𝑖 + 1) = ((𝑥 − 1) + 1))
278277oveq1d 7405 . . . . . . . . . . . 12 (𝑖 = (𝑥 − 1) → ((𝑖 + 1) 𝑋) = (((𝑥 − 1) + 1) 𝑋))
279 2fveq3 6866 . . . . . . . . . . . 12 (𝑖 = (𝑥 − 1) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘(𝑥 − 1))))
280278, 279oveq12d 7408 . . . . . . . . . . 11 (𝑖 = (𝑥 − 1) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))
28125, 273, 34, 274, 275, 276, 212, 280gsummptshft 19873 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
282 0p1e1 12310 . . . . . . . . . . . . . 14 (0 + 1) = 1
283282a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 + 1) = 1)
28475ad2antrl 728 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 − 1) + 1) = 𝑠)
285283, 284oveq12d 7408 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 + 1)...((𝑠 − 1) + 1)) = (1...𝑠))
286285mpteq1d 5200 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))
287286oveq2d 7406 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
288281, 287eqtrd 2765 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
289288oveq1d 7405 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
290 ringabl 20197 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
29131, 290syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
292291adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Abel)
293224adantl 481 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ)
294 nnz 12557 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
295 elfzm1b 13570 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1))))
296294, 197, 295syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1))))
297199adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0..^𝑠) = (0...(𝑠 − 1)))
298297eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...(𝑠 − 1)) = (0..^𝑠))
299298eleq2d 2815 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) ↔ (𝑖 − 1) ∈ (0..^𝑠)))
300 elfzofz 13643 . . . . . . . . . . . . . . . . . 18 ((𝑖 − 1) ∈ (0..^𝑠) → (𝑖 − 1) ∈ (0...𝑠))
301299, 300biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) → (𝑖 − 1) ∈ (0...𝑠)))
302296, 301sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
303302expimpd 453 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ → ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)))
304293, 303mpcom 38 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))
305304ex 412 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
306305ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
307306imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))
308238, 307ffvelcdmd 7060 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵)
3092, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22634 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘(𝑖 − 1)) ∈ 𝐵𝑖 ∈ ℕ0)) → ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌))
310235, 236, 308, 226, 309syl22anc 838 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌))
311 eqid 2730 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
312 eqid 2730 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
31325, 252, 292, 221, 310, 249, 311, 312gsummptfidmsub 19887 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
314272, 289, 3133eqtr4d 2775 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
315314oveq2d 7406 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
316220adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Grp)
31725, 252grpsubcl 18959 . . . . . . . . . 10 ((𝑌 ∈ Grp ∧ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌) ∧ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
318316, 310, 249, 317syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
319318ralrimiva 3126 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)(((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
32025, 34, 221, 319gsummptcl 19904 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌))
32125, 26cmncom 19735 . . . . . . 7 ((𝑌 ∈ CMnd ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
32234, 70, 320, 321syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
323254, 315, 3223eqtrd 2769 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
324323oveq1d 7405 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
32525, 26mndcl 18676 . . . . . 6 ((𝑌 ∈ Mnd ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
32657, 70, 214, 325syl3anc 1373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
32725, 26, 252, 292, 326, 251, 171ablsubsub4 19755 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
32825, 26, 252grpaddsubass 18969 . . . . 5 ((𝑌 ∈ Grp ∧ ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
329220, 320, 70, 171, 328syl13anc 1374 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
330324, 327, 3293eqtr3d 2773 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
3316, 2, 3, 4, 5mat2pmatbas 22620 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌))
332235, 236, 308, 331syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌))
33325, 9, 135, 136, 252, 222, 232, 332, 248lmodsubdi 20832 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
334333eqcomd 2736 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
335334mpteq2dva 5203 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
336335oveq2d 7406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
337336oveq1d 7405 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
338217, 330, 3373eqtrd 2769 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
33916, 191, 3383eqtrd 2769 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  .gcmg 19006  CMndccmn 19717  Abelcabl 19718  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  LModclmod 20773  var1cv1 22067  Poly1cpl1 22068   Mat cmat 22301   matToPolyMat cmat2pmat 22598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-assa 21769  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-mamu 22285  df-mat 22302  df-mat2pmat 22601
This theorem is referenced by:  cpmadugsumfi  22771
  Copyright terms: Public domain W3C validator