MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemF Structured version   Visualization version   GIF version

Theorem cpmadugsumlemF 22903
Description: Lemma F for cpmadugsum 22905. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
cpmadugsum.g + = (+g𝑌)
cpmadugsum.s = (-g𝑌)
Assertion
Ref Expression
cpmadugsumlemF (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠   𝑇,𝑖   ,𝑖   ,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   + (𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemF
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12560 . . . 4 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
2 cpmadugsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 cpmadugsum.b . . . . 5 𝐵 = (Base‘𝐴)
4 cpmadugsum.p . . . . 5 𝑃 = (Poly1𝑅)
5 cpmadugsum.y . . . . 5 𝑌 = (𝑁 Mat 𝑃)
6 cpmadugsum.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 cpmadugsum.x . . . . 5 𝑋 = (var1𝑅)
8 cpmadugsum.e . . . . 5 = (.g‘(mulGrp‘𝑃))
9 cpmadugsum.m . . . . 5 · = ( ·𝑠𝑌)
10 cpmadugsum.r . . . . 5 × = (.r𝑌)
11 cpmadugsum.1 . . . . 5 1 = (1r𝑌)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cpmadugsumlemB 22901 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
131, 12sylanr1 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
142, 3, 4, 5, 6, 7, 8, 9, 10, 11cpmadugsumlemC 22902 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
151, 14sylanr1 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
1613, 15oveq12d 7466 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
17 nncn 12301 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
18 npcan1 11715 . . . . . . . . . 10 (𝑠 ∈ ℂ → ((𝑠 − 1) + 1) = 𝑠)
1918eqcomd 2746 . . . . . . . . 9 (𝑠 ∈ ℂ → 𝑠 = ((𝑠 − 1) + 1))
2017, 19syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 = ((𝑠 − 1) + 1))
2120oveq2d 7464 . . . . . . 7 (𝑠 ∈ ℕ → (0...𝑠) = (0...((𝑠 − 1) + 1)))
2221mpteq1d 5261 . . . . . 6 (𝑠 ∈ ℕ → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))
2322oveq2d 7464 . . . . 5 (𝑠 ∈ ℕ → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
2423ad2antrl 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
25 eqid 2740 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 cpmadugsum.g . . . . 5 + = (+g𝑌)
27 crngring 20272 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 616 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
304, 5pmatring 22719 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringcmn 20305 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
3433adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ CMnd)
35 nnm1nn0 12594 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
3635ad2antrl 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 − 1) ∈ ℕ0)
37 simpll1 1212 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑁 ∈ Fin)
38273ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
3938adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑅 ∈ Ring)
41 elmapi 8907 . . . . . . . . . 10 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
4221feq2d 6733 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑏:(0...𝑠)⟶𝐵𝑏:(0...((𝑠 − 1) + 1))⟶𝐵))
4341, 42syl5ibcom 245 . . . . . . . . 9 (𝑏 ∈ (𝐵m (0...𝑠)) → (𝑠 ∈ ℕ → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵))
4443impcom 407 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)
4544adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)
4645ffvelcdmda 7118 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑏𝑖) ∈ 𝐵)
47 elfznn0 13677 . . . . . . . 8 (𝑖 ∈ (0...((𝑠 − 1) + 1)) → 𝑖 ∈ ℕ0)
4847adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑖 ∈ ℕ0)
49 1nn0 12569 . . . . . . . 8 1 ∈ ℕ0
5049a1i 11 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 1 ∈ ℕ0)
5148, 50nn0addcld 12617 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑖 + 1) ∈ ℕ0)
522, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22767 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏𝑖) ∈ 𝐵 ∧ (𝑖 + 1) ∈ ℕ0)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
5337, 40, 46, 51, 52syl22anc 838 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
5425, 26, 34, 36, 53gsummptfzsplit 19974 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
55 ringmnd 20270 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
5631, 55syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
5756adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Mnd)
58 ovexd 7483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 − 1) + 1) ∈ V)
59 simpl1 1191 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
60 nn0fz0 13682 . . . . . . . . . . 11 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
611, 60sylib 218 . . . . . . . . . 10 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
62 ffvelcdm 7115 . . . . . . . . . 10 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ (0...𝑠)) → (𝑏𝑠) ∈ 𝐵)
6341, 61, 62syl2anr 596 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏𝑠) ∈ 𝐵)
641adantr 480 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
6549a1i 11 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 1 ∈ ℕ0)
6664, 65nn0addcld 12617 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑠 + 1) ∈ ℕ0)
6763, 66jca 511 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0))
6867adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0))
692, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22767 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0)) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
7059, 39, 68, 69syl21anc 837 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
71 oveq1 7455 . . . . . . . . 9 (𝑖 = ((𝑠 − 1) + 1) → (𝑖 + 1) = (((𝑠 − 1) + 1) + 1))
7271oveq1d 7463 . . . . . . . 8 (𝑖 = ((𝑠 − 1) + 1) → ((𝑖 + 1) 𝑋) = ((((𝑠 − 1) + 1) + 1) 𝑋))
73 2fveq3 6925 . . . . . . . 8 (𝑖 = ((𝑠 − 1) + 1) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑠 − 1) + 1))))
7472, 73oveq12d 7466 . . . . . . 7 (𝑖 = ((𝑠 − 1) + 1) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))))
7517, 18syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → ((𝑠 − 1) + 1) = 𝑠)
7675oveq1d 7463 . . . . . . . . . 10 (𝑠 ∈ ℕ → (((𝑠 − 1) + 1) + 1) = (𝑠 + 1))
7776oveq1d 7463 . . . . . . . . 9 (𝑠 ∈ ℕ → ((((𝑠 − 1) + 1) + 1) 𝑋) = ((𝑠 + 1) 𝑋))
7875fveq2d 6924 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑏‘((𝑠 − 1) + 1)) = (𝑏𝑠))
7978fveq2d 6924 . . . . . . . . 9 (𝑠 ∈ ℕ → (𝑇‘(𝑏‘((𝑠 − 1) + 1))) = (𝑇‘(𝑏𝑠)))
8077, 79oveq12d 7466 . . . . . . . 8 (𝑠 ∈ ℕ → (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8180ad2antrl 727 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 − 1) + 1) + 1) 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8274, 81sylan9eqr 2802 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 = ((𝑠 − 1) + 1)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8325, 57, 58, 70, 82gsumsnd 19994 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
8483oveq2d 7464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
8524, 54, 843eqtrd 2784 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
861ad2antrl 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
874, 5pmatlmod 22720 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
8828, 87syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
89883adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
9089adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ LMod)
9190adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
92 eqid 2740 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
93 eqid 2740 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
9492, 93mgpbas 20167 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
954ply1ring 22270 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9627, 95syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
97963ad2ant2 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
9892ringmgp 20266 . . . . . . . . . . 11 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
9997, 98syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
10099adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑃) ∈ Mnd)
101100adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
102 elfznn0 13677 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
103102adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
1047, 4, 93vr1cl 22240 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
10527, 104syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
1061053ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
107106adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑋 ∈ (Base‘𝑃))
108107adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
10994, 8, 101, 103, 108mulgnn0cld 19135 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
1104ply1crng 22221 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
111110anim2i 616 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1121113adant3 1132 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1135matsca2 22447 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
114112, 113syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
115114eqcomd 2746 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
116115fveq2d 6924 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
117116eleq2d 2830 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
118117adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
119118adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
120109, 119mpbird 257 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
12131adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
122121adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
123 simpll1 1212 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
12439adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
125 simpll3 1214 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑀𝐵)
1266, 2, 3, 4, 5mat2pmatbas 22753 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
127123, 124, 125, 126syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇𝑀) ∈ (Base‘𝑌))
12886adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
129 simprr 772 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
130129anim1i 614 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
1312, 3, 4, 5, 6m2pmfzmap 22774 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
132123, 124, 128, 130, 131syl31anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
13325, 10ringcl 20277 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
134122, 127, 132, 133syl3anc 1371 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
135 eqid 2740 . . . . . . 7 (Scalar‘𝑌) = (Scalar‘𝑌)
136 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
13725, 135, 9, 136lmodvscl 20898 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
13891, 120, 134, 137syl3anc 1371 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
13925, 26, 34, 86, 138gsummptfzsplitl 19975 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
140 0nn0 12568 . . . . . . . 8 0 ∈ ℕ0
141140a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℕ0)
142 eqid 2740 . . . . . . . . . . . . 13 (0g‘(mulGrp‘𝑃)) = (0g‘(mulGrp‘𝑃))
14394, 142, 8mulg0 19114 . . . . . . . . . . . 12 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
144106, 143syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
145144adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (0g‘(mulGrp‘𝑃)))
146145oveq1d 7463 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((0g‘(mulGrp‘𝑃)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
147 eqid 2740 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
14892, 147ringidval 20210 . . . . . . . . . . . 12 (1r𝑃) = (0g‘(mulGrp‘𝑃))
149148a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1r𝑃) = (0g‘(mulGrp‘𝑃)))
150149eqcomd 2746 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0g‘(mulGrp‘𝑃)) = (1r𝑃))
151150oveq1d 7463 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0g‘(mulGrp‘𝑃)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
152114adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑃 = (Scalar‘𝑌))
153152fveq2d 6924 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1r𝑃) = (1r‘(Scalar‘𝑌)))
154153oveq1d 7463 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
15527, 126syl3an2 1164 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
156155adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
157 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → 𝑏:(0...𝑠)⟶𝐵)
158 elnn0uz 12948 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ0𝑠 ∈ (ℤ‘0))
1591, 158sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
160 eluzfz1 13591 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
161159, 160syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
162161adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → 0 ∈ (0...𝑠))
163157, 162ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 ((𝑏:(0...𝑠)⟶𝐵𝑠 ∈ ℕ) → (𝑏‘0) ∈ 𝐵)
164163ex 412 . . . . . . . . . . . . . . . 16 (𝑏:(0...𝑠)⟶𝐵 → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵))
16541, 164syl 17 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵m (0...𝑠)) → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵))
166165impcom 407 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
167166adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1686, 2, 3, 4, 5mat2pmatbas 22753 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
16959, 39, 167, 168syl3anc 1371 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
17025, 10ringcl 20277 . . . . . . . . . . . 12 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
171121, 156, 169, 170syl3anc 1371 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
172 eqid 2740 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
17325, 135, 9, 172lmodvs1 20910 . . . . . . . . . . 11 ((𝑌 ∈ LMod ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
17490, 171, 173syl2anc 583 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r‘(Scalar‘𝑌)) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
175154, 174eqtrd 2780 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
176146, 151, 1753eqtrd 2784 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
177176, 171eqeltrd 2844 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
178 oveq1 7455 . . . . . . . . 9 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
179 2fveq3 6925 . . . . . . . . . 10 (𝑖 = 0 → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘0)))
180179oveq2d 7464 . . . . . . . . 9 (𝑖 = 0 → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
181178, 180oveq12d 7466 . . . . . . . 8 (𝑖 = 0 → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
182181adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 = 0) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
18325, 57, 141, 177, 182gsumsnd 19994 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
18494, 148, 8mulg0 19114 . . . . . . . . 9 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
185106, 184syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r𝑃))
186185adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (1r𝑃))
187186oveq1d 7463 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((1r𝑃) · ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
188183, 187, 1753eqtrd 2784 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
189188oveq2d 7464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
190139, 189eqtrd 2780 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
19185, 190oveq12d 7466 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
192 fzfid 14024 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0...(𝑠 − 1)) ∈ Fin)
193 simpll1 1212 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑁 ∈ Fin)
19439adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑅 ∈ Ring)
19541adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
196195adantr 480 . . . . . . . . . 10 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑏:(0...𝑠)⟶𝐵)
197 nnz 12660 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
198 fzoval 13717 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℤ → (0..^𝑠) = (0...(𝑠 − 1)))
199197, 198syl 17 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (0..^𝑠) = (0...(𝑠 − 1)))
200199eqcomd 2746 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (0...(𝑠 − 1)) = (0..^𝑠))
201200eleq2d 2830 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) ↔ 𝑖 ∈ (0..^𝑠)))
202 elfzofz 13732 . . . . . . . . . . . . 13 (𝑖 ∈ (0..^𝑠) → 𝑖 ∈ (0...𝑠))
203201, 202biimtrdi 253 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠)))
204203adantr 480 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠)))
205204imp 406 . . . . . . . . . 10 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ (0...𝑠))
206196, 205ffvelcdmd 7119 . . . . . . . . 9 (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏𝑖) ∈ 𝐵)
207206adantll 713 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏𝑖) ∈ 𝐵)
208 elfznn0 13677 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ ℕ0)
209208adantl 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ ℕ0)
21049a1i 11 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 1 ∈ ℕ0)
211209, 210nn0addcld 12617 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑖 + 1) ∈ ℕ0)
212193, 194, 207, 211, 52syl22anc 838 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
213212ralrimiva 3152 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 − 1))(((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
21425, 34, 192, 213gsummptcl 20009 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
21525, 26cmncom 19840 . . . . 5 ((𝑌 ∈ CMnd ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
21634, 214, 70, 215syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))))
217216oveq1d 7463 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
218 ringgrp 20265 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
21931, 218syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
220219adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
221 fzfid 14024 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1...𝑠) ∈ Fin)
22290adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ LMod)
223100adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
224 elfznn 13613 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ)
225224nnnn0d 12613 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0)
226225adantl 481 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0)
227107adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑋 ∈ (Base‘𝑃))
22894, 8, 223, 226, 227mulgnn0cld 19135 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
229114fveq2d 6924 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
230229adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
231230adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
232228, 231eleqtrd 2846 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
233121adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring)
234156adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇𝑀) ∈ (Base‘𝑌))
235 simpll1 1212 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑁 ∈ Fin)
23639adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑅 ∈ Ring)
237195adantl 481 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
238237adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
239 1eluzge0 12957 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
240 fzss1 13623 . . . . . . . . . . . . . . . . 17 (1 ∈ (ℤ‘0) → (1...𝑠) ⊆ (0...𝑠))
241239, 240mp1i 13 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (1...𝑠) ⊆ (0...𝑠))
242241sseld 4007 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)))
243242ad2antrl 727 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)))
244243imp 406 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (0...𝑠))
245238, 244ffvelcdmd 7119 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) ∈ 𝐵)
2466, 2, 3, 4, 5mat2pmatbas 22753 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑖) ∈ 𝐵) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
247235, 236, 245, 246syl3anc 1371 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
248233, 234, 247, 133syl3anc 1371 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
249222, 232, 248, 137syl3anc 1371 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
250249ralrimiva 3152 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌))
25125, 34, 221, 250gsummptcl 20009 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
252 cpmadugsum.s . . . . . . . 8 = (-g𝑌)
25325, 26, 252grpaddsubass 19070 . . . . . . 7 ((𝑌 ∈ Grp ∧ ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
254220, 70, 214, 251, 253syl13anc 1372 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
255 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → (𝑥 − 1) = (𝑖 − 1))
256255oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → ((𝑥 − 1) + 1) = ((𝑖 − 1) + 1))
257256oveq1d 7463 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (((𝑥 − 1) + 1) 𝑋) = (((𝑖 − 1) + 1) 𝑋))
258255fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → (𝑏‘(𝑥 − 1)) = (𝑏‘(𝑖 − 1)))
259258fveq2d 6924 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑇‘(𝑏‘(𝑥 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
260257, 259oveq12d 7466 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))) = ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
261260cbvmptv 5279 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
262224nncnd 12309 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
263262adantl 481 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℂ)
264 npcan1 11715 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℂ → ((𝑖 − 1) + 1) = 𝑖)
265263, 264syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 − 1) + 1) = 𝑖)
266265oveq1d 7463 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 − 1) + 1) 𝑋) = (𝑖 𝑋))
267266oveq1d 7463 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) = ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
268267mpteq2dva 5266 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))
269261, 268eqtrid 2792 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))
270269oveq2d 7464 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))))
271270ad2antrl 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))))
272271oveq1d 7463 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
273 eqid 2740 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
274 1zzd 12674 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℤ)
275 0zd 12651 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℤ)
27636nn0zd 12665 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 − 1) ∈ ℤ)
277 oveq1 7455 . . . . . . . . . . . . 13 (𝑖 = (𝑥 − 1) → (𝑖 + 1) = ((𝑥 − 1) + 1))
278277oveq1d 7463 . . . . . . . . . . . 12 (𝑖 = (𝑥 − 1) → ((𝑖 + 1) 𝑋) = (((𝑥 − 1) + 1) 𝑋))
279 2fveq3 6925 . . . . . . . . . . . 12 (𝑖 = (𝑥 − 1) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘(𝑥 − 1))))
280278, 279oveq12d 7466 . . . . . . . . . . 11 (𝑖 = (𝑥 − 1) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))
28125, 273, 34, 274, 275, 276, 212, 280gsummptshft 19978 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
282 0p1e1 12415 . . . . . . . . . . . . . 14 (0 + 1) = 1
283282a1i 11 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 + 1) = 1)
28475ad2antrl 727 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 − 1) + 1) = 𝑠)
285283, 284oveq12d 7466 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 + 1)...((𝑠 − 1) + 1)) = (1...𝑠))
286285mpteq1d 5261 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))
287286oveq2d 7464 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
288281, 287eqtrd 2780 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))))
289288oveq1d 7463 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
290 ringabl 20304 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
29131, 290syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
292291adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Abel)
293224adantl 481 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ)
294 nnz 12660 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
295 elfzm1b 13662 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1))))
296294, 197, 295syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1))))
297199adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0..^𝑠) = (0...(𝑠 − 1)))
298297eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...(𝑠 − 1)) = (0..^𝑠))
299298eleq2d 2830 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) ↔ (𝑖 − 1) ∈ (0..^𝑠)))
300 elfzofz 13732 . . . . . . . . . . . . . . . . . 18 ((𝑖 − 1) ∈ (0..^𝑠) → (𝑖 − 1) ∈ (0...𝑠))
301299, 300biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) → (𝑖 − 1) ∈ (0...𝑠)))
302296, 301sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
303302expimpd 453 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ → ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)))
304293, 303mpcom 38 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))
305304ex 412 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
306305ad2antrl 727 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠)))
307306imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))
308238, 307ffvelcdmd 7119 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵)
3092, 3, 6, 4, 5, 25, 9, 8, 7mat2pmatscmxcl 22767 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘(𝑖 − 1)) ∈ 𝐵𝑖 ∈ ℕ0)) → ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌))
310235, 236, 308, 226, 309syl22anc 838 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌))
311 eqid 2740 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))
312 eqid 2740 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
31325, 252, 292, 221, 310, 249, 311, 312gsummptfidmsub 19992 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
314272, 289, 3133eqtr4d 2790 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
315314oveq2d 7464 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))))
316220adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Grp)
31725, 252grpsubcl 19060 . . . . . . . . . 10 ((𝑌 ∈ Grp ∧ ((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌) ∧ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ (Base‘𝑌)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
318316, 310, 249, 317syl3anc 1371 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
319318ralrimiva 3152 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)(((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌))
32025, 34, 221, 319gsummptcl 20009 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌))
32125, 26cmncom 19840 . . . . . . 7 ((𝑌 ∈ CMnd ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
32234, 70, 320, 321syl3anc 1371 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
323254, 315, 3223eqtrd 2784 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))))
324323oveq1d 7463 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
32525, 26mndcl 18780 . . . . . 6 ((𝑌 ∈ Mnd ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
32657, 70, 214, 325syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ∈ (Base‘𝑌))
32725, 26, 252, 292, 326, 251, 171ablsubsub4 19860 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
32825, 26, 252grpaddsubass 19070 . . . . 5 ((𝑌 ∈ Grp ∧ ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
329220, 320, 70, 171, 328syl13anc 1372 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
330324, 327, 3293eqtr3d 2788 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
3316, 2, 3, 4, 5mat2pmatbas 22753 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌))
332235, 236, 308, 331syl3anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌))
33325, 9, 135, 136, 252, 222, 232, 332, 248lmodsubdi 20939 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
334333eqcomd 2746 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))) = ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
335334mpteq2dva 5266 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
336335oveq2d 7464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
337336oveq1d 7463 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
338217, 330, 3373eqtrd 2784 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) + (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠)))) ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))) + ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
33916, 191, 3383eqtrd 2784 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  CMndccmn 19822  Abelcabl 19823  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  LModclmod 20880  var1cv1 22198  Poly1cpl1 22199   Mat cmat 22432   matToPolyMat cmat2pmat 22731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-mamu 22416  df-mat 22433  df-mat2pmat 22734
This theorem is referenced by:  cpmadugsumfi  22904
  Copyright terms: Public domain W3C validator