MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgunit Structured version   Visualization version   GIF version

Theorem tdrgunit 23424
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
istdrg.1 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
tdrgunit (𝑅 ∈ TopDRing → (𝑀s 𝑈) ∈ TopGrp)

Proof of Theorem tdrgunit
StepHypRef Expression
1 istrg.1 . . 3 𝑀 = (mulGrp‘𝑅)
2 istdrg.1 . . 3 𝑈 = (Unit‘𝑅)
31, 2istdrg 23423 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))
43simp3bi 1146 1 (𝑅 ∈ TopDRing → (𝑀s 𝑈) ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  s cress 17038  mulGrpcmgp 19815  Unitcui 19976  DivRingcdr 20093  TopGrpctgp 23328  TopRingctrg 23413  TopDRingctdrg 23414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340  df-tdrg 23418
This theorem is referenced by:  invrcn2  23437
  Copyright terms: Public domain W3C validator