| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version | ||
| Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| tdrgunit | ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | istdrg.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | istdrg 24109 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ↾s cress 17256 mulGrpcmgp 20105 Unitcui 20320 DivRingcdr 20694 TopGrpctgp 24014 TopRingctrg 24099 TopDRingctdrg 24100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-tdrg 24104 |
| This theorem is referenced by: invrcn2 24123 |
| Copyright terms: Public domain | W3C validator |