![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version |
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | β’ π = (mulGrpβπ ) |
istdrg.1 | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
tdrgunit | β’ (π β TopDRing β (π βΎs π) β TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 β’ π = (mulGrpβπ ) | |
2 | istdrg.1 | . . 3 β’ π = (Unitβπ ) | |
3 | 1, 2 | istdrg 23669 | . 2 β’ (π β TopDRing β (π β TopRing β§ π β DivRing β§ (π βΎs π) β TopGrp)) |
4 | 3 | simp3bi 1147 | 1 β’ (π β TopDRing β (π βΎs π) β TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 βΎs cress 17172 mulGrpcmgp 19986 Unitcui 20168 DivRingcdr 20356 TopGrpctgp 23574 TopRingctrg 23659 TopDRingctdrg 23660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-tdrg 23664 |
This theorem is referenced by: invrcn2 23683 |
Copyright terms: Public domain | W3C validator |