MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgunit Structured version   Visualization version   GIF version

Theorem tdrgunit 23670
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrpβ€˜π‘…)
istdrg.1 π‘ˆ = (Unitβ€˜π‘…)
Assertion
Ref Expression
tdrgunit (𝑅 ∈ TopDRing β†’ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp)

Proof of Theorem tdrgunit
StepHypRef Expression
1 istrg.1 . . 3 𝑀 = (mulGrpβ€˜π‘…)
2 istdrg.1 . . 3 π‘ˆ = (Unitβ€˜π‘…)
31, 2istdrg 23669 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp))
43simp3bi 1147 1 (𝑅 ∈ TopDRing β†’ (𝑀 β†Ύs π‘ˆ) ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408   β†Ύs cress 17172  mulGrpcmgp 19986  Unitcui 20168  DivRingcdr 20356  TopGrpctgp 23574  TopRingctrg 23659  TopDRingctdrg 23660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-tdrg 23664
This theorem is referenced by:  invrcn2  23683
  Copyright terms: Public domain W3C validator