Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version |
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
tdrgunit | ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | istdrg.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 23423 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
4 | 3 | simp3bi 1146 | 1 ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 ↾s cress 17038 mulGrpcmgp 19815 Unitcui 19976 DivRingcdr 20093 TopGrpctgp 23328 TopRingctrg 23413 TopDRingctdrg 23414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 df-tdrg 23418 |
This theorem is referenced by: invrcn2 23437 |
Copyright terms: Public domain | W3C validator |