MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgunit Structured version   Visualization version   GIF version

Theorem tdrgunit 23201
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
istdrg.1 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
tdrgunit (𝑅 ∈ TopDRing → (𝑀s 𝑈) ∈ TopGrp)

Proof of Theorem tdrgunit
StepHypRef Expression
1 istrg.1 . . 3 𝑀 = (mulGrp‘𝑅)
2 istdrg.1 . . 3 𝑈 = (Unit‘𝑅)
31, 2istdrg 23200 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))
43simp3bi 1149 1 (𝑅 ∈ TopDRing → (𝑀s 𝑈) ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cfv 6415  (class class class)co 7252  s cress 16842  mulGrpcmgp 19610  Unitcui 19771  DivRingcdr 19881  TopGrpctgp 23105  TopRingctrg 23190  TopDRingctdrg 23191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423  df-ov 7255  df-tdrg 23195
This theorem is referenced by:  invrcn2  23214
  Copyright terms: Public domain W3C validator