Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version |
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
tdrgunit | ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | istdrg.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 23200 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
4 | 3 | simp3bi 1149 | 1 ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ‘cfv 6415 (class class class)co 7252 ↾s cress 16842 mulGrpcmgp 19610 Unitcui 19771 DivRingcdr 19881 TopGrpctgp 23105 TopRingctrg 23190 TopDRingctdrg 23191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 df-tdrg 23195 |
This theorem is referenced by: invrcn2 23214 |
Copyright terms: Public domain | W3C validator |