![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version |
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
tdrgunit | ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | istdrg.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 24195 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
4 | 3 | simp3bi 1147 | 1 ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 mulGrpcmgp 20161 Unitcui 20381 DivRingcdr 20751 TopGrpctgp 24100 TopRingctrg 24185 TopDRingctdrg 24186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tdrg 24190 |
This theorem is referenced by: invrcn2 24209 |
Copyright terms: Public domain | W3C validator |