| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trgtgp | Structured version Visualization version GIF version | ||
| Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| trgtgp | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | istrg 24102 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 mulGrpcmgp 20100 Ringcrg 20193 TopMndctmd 24008 TopGrpctgp 24009 TopRingctrg 24094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-trg 24098 |
| This theorem is referenced by: trgtmd2 24107 trgtps 24108 pl1cn 33986 |
| Copyright terms: Public domain | W3C validator |