MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtgp Structured version   Visualization version   GIF version

Theorem trgtgp 23202
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtgp (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)

Proof of Theorem trgtgp
StepHypRef Expression
1 eqid 2739 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 23198 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp1bi 1147 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  cfv 6415  mulGrpcmgp 19610  Ringcrg 19673  TopMndctmd 23104  TopGrpctgp 23105  TopRingctrg 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423  df-trg 23194
This theorem is referenced by:  trgtmd2  23203  trgtps  23204  pl1cn  31782
  Copyright terms: Public domain W3C validator