![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgtgp | Structured version Visualization version GIF version |
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgtgp | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | istrg 22375 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
3 | 2 | simp1bi 1136 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6135 mulGrpcmgp 18876 Ringcrg 18934 TopMndctmd 22282 TopGrpctgp 22283 TopRingctrg 22367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-trg 22371 |
This theorem is referenced by: trgtmd2 22380 trgtps 22381 pl1cn 30599 |
Copyright terms: Public domain | W3C validator |