Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trgtgp | Structured version Visualization version GIF version |
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgtgp | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | istrg 23198 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
3 | 2 | simp1bi 1147 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ‘cfv 6415 mulGrpcmgp 19610 Ringcrg 19673 TopMndctmd 23104 TopGrpctgp 23105 TopRingctrg 23190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-trg 23194 |
This theorem is referenced by: trgtmd2 23203 trgtps 23204 pl1cn 31782 |
Copyright terms: Public domain | W3C validator |