MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtgp Structured version   Visualization version   GIF version

Theorem trgtgp 23671
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtgp (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)

Proof of Theorem trgtgp
StepHypRef Expression
1 eqid 2732 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 23667 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp1bi 1145 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6543  mulGrpcmgp 19986  Ringcrg 20055  TopMndctmd 23573  TopGrpctgp 23574  TopRingctrg 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-trg 23663
This theorem is referenced by:  trgtmd2  23672  trgtps  23673  pl1cn  32930
  Copyright terms: Public domain W3C validator