MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtgp Structured version   Visualization version   GIF version

Theorem trgtgp 24084
Description: A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtgp (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)

Proof of Theorem trgtgp
StepHypRef Expression
1 eqid 2733 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 24080 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp1bi 1145 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cfv 6486  mulGrpcmgp 20060  Ringcrg 20153  TopMndctmd 23986  TopGrpctgp 23987  TopRingctrg 24072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-trg 24076
This theorem is referenced by:  trgtmd2  24085  trgtps  24086  pl1cn  33989
  Copyright terms: Public domain W3C validator