MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrcn2 Structured version   Visualization version   GIF version

Theorem invrcn2 24188
Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mulrcn.j 𝐽 = (TopOpen‘𝑅)
invrcn.i 𝐼 = (invr𝑅)
invrcn.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
invrcn2 (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem invrcn2
StepHypRef Expression
1 eqid 2737 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 invrcn.u . . 3 𝑈 = (Unit‘𝑅)
31, 2tdrgunit 24175 . 2 (𝑅 ∈ TopDRing → ((mulGrp‘𝑅) ↾s 𝑈) ∈ TopGrp)
4 eqid 2737 . . . 4 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
5 mulrcn.j . . . . 5 𝐽 = (TopOpen‘𝑅)
61, 5mgptopn 20145 . . . 4 𝐽 = (TopOpen‘(mulGrp‘𝑅))
74, 6resstopn 23194 . . 3 (𝐽t 𝑈) = (TopOpen‘((mulGrp‘𝑅) ↾s 𝑈))
8 invrcn.i . . . 4 𝐼 = (invr𝑅)
92, 4, 8invrfval 20389 . . 3 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
107, 9tgpinv 24093 . 2 (((mulGrp‘𝑅) ↾s 𝑈) ∈ TopGrp → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
113, 10syl 17 1 (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  s cress 17274  t crest 17465  TopOpenctopn 17466  mulGrpcmgp 20137  Unitcui 20355  invrcinvr 20387   Cn ccn 23232  TopGrpctgp 24079  TopDRingctdrg 24165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-rest 17467  df-topn 17468  df-minusg 18955  df-mgp 20138  df-invr 20388  df-tgp 24081  df-tdrg 24169
This theorem is referenced by:  invrcn  24189
  Copyright terms: Public domain W3C validator