MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrcn2 Structured version   Visualization version   GIF version

Theorem invrcn2 24204
Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mulrcn.j 𝐽 = (TopOpen‘𝑅)
invrcn.i 𝐼 = (invr𝑅)
invrcn.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
invrcn2 (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem invrcn2
StepHypRef Expression
1 eqid 2735 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 invrcn.u . . 3 𝑈 = (Unit‘𝑅)
31, 2tdrgunit 24191 . 2 (𝑅 ∈ TopDRing → ((mulGrp‘𝑅) ↾s 𝑈) ∈ TopGrp)
4 eqid 2735 . . . 4 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
5 mulrcn.j . . . . 5 𝐽 = (TopOpen‘𝑅)
61, 5mgptopn 20164 . . . 4 𝐽 = (TopOpen‘(mulGrp‘𝑅))
74, 6resstopn 23210 . . 3 (𝐽t 𝑈) = (TopOpen‘((mulGrp‘𝑅) ↾s 𝑈))
8 invrcn.i . . . 4 𝐼 = (invr𝑅)
92, 4, 8invrfval 20406 . . 3 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
107, 9tgpinv 24109 . 2 (((mulGrp‘𝑅) ↾s 𝑈) ∈ TopGrp → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
113, 10syl 17 1 (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  s cress 17274  t crest 17467  TopOpenctopn 17468  mulGrpcmgp 20152  Unitcui 20372  invrcinvr 20404   Cn ccn 23248  TopGrpctgp 24095  TopDRingctdrg 24181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-rest 17469  df-topn 17470  df-minusg 18968  df-mgp 20153  df-invr 20405  df-tgp 24097  df-tdrg 24185
This theorem is referenced by:  invrcn  24205
  Copyright terms: Public domain W3C validator