| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tlmtmd | Structured version Visualization version GIF version | ||
| Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtmd | ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 2 | eqid 2737 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 3 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2737 | . . . 4 ⊢ (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊)) | |
| 5 | 1, 2, 3, 4 | istlm 24193 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing)) |
| 7 | 6 | simp1d 1143 | 1 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Scalarcsca 17300 TopOpenctopn 17466 LModclmod 20858 ·sf cscaf 20859 Cn ccn 23232 ×t ctx 23568 TopMndctmd 24078 TopRingctrg 24164 TopModctlm 24166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-tlm 24170 |
| This theorem is referenced by: tlmtps 24196 tlmtgp 24204 |
| Copyright terms: Public domain | W3C validator |