![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tlmtmd | Structured version Visualization version GIF version |
Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtmd | ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
2 | eqid 2728 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
3 | eqid 2728 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2728 | . . . 4 ⊢ (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊)) | |
5 | 1, 2, 3, 4 | istlm 24102 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing)) |
7 | 6 | simp1d 1140 | 1 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Scalarcsca 17236 TopOpenctopn 17403 LModclmod 20743 ·sf cscaf 20744 Cn ccn 23141 ×t ctx 23477 TopMndctmd 23987 TopRingctrg 24073 TopModctlm 24075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-tlm 24079 |
This theorem is referenced by: tlmtps 24105 tlmtgp 24113 |
Copyright terms: Public domain | W3C validator |