MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtmd Structured version   Visualization version   GIF version

Theorem tlmtmd 23338
Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtmd (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)

Proof of Theorem tlmtmd
StepHypRef Expression
1 eqid 2738 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2738 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2738 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 23336 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 498 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp1d 1141 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  cfv 6433  (class class class)co 7275  Scalarcsca 16965  TopOpenctopn 17132  LModclmod 20123   ·sf cscaf 20124   Cn ccn 22375   ×t ctx 22711  TopMndctmd 23221  TopRingctrg 23307  TopModctlm 23309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-tlm 23313
This theorem is referenced by:  tlmtps  23339  tlmtgp  23347
  Copyright terms: Public domain W3C validator