MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtmd Structured version   Visualization version   GIF version

Theorem tlmtmd 24100
Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtmd (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)

Proof of Theorem tlmtmd
StepHypRef Expression
1 eqid 2731 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2731 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2731 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2731 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 24098 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp1d 1142 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  cfv 6481  (class class class)co 7346  Scalarcsca 17161  TopOpenctopn 17322  LModclmod 20791   ·sf cscaf 20792   Cn ccn 23137   ×t ctx 23473  TopMndctmd 23983  TopRingctrg 24069  TopModctlm 24071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-tlm 24075
This theorem is referenced by:  tlmtps  24101  tlmtgp  24109
  Copyright terms: Public domain W3C validator