MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtmd Structured version   Visualization version   GIF version

Theorem tlmtmd 24112
Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtmd (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)

Proof of Theorem tlmtmd
StepHypRef Expression
1 eqid 2734 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2734 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2734 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2734 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 24110 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp1d 1142 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2107  cfv 6528  (class class class)co 7400  Scalarcsca 17261  TopOpenctopn 17422  LModclmod 20804   ·sf cscaf 20805   Cn ccn 23149   ×t ctx 23485  TopMndctmd 23995  TopRingctrg 24081  TopModctlm 24083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-ov 7403  df-tlm 24087
This theorem is referenced by:  tlmtps  24113  tlmtgp  24121
  Copyright terms: Public domain W3C validator