| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vscacn | Structured version Visualization version GIF version | ||
| Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istlm.s | ⊢ · = ( ·sf ‘𝑊) |
| istlm.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| istlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| istlm.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
| Ref | Expression |
|---|---|
| vscacn | ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istlm.s | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
| 2 | istlm.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 3 | istlm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | istlm.k | . . 3 ⊢ 𝐾 = (TopOpen‘𝐹) | |
| 5 | 1, 2, 3, 4 | istlm 24123 | . 2 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) |
| 6 | 5 | simprbi 496 | 1 ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Scalarcsca 17274 TopOpenctopn 17435 LModclmod 20817 ·sf cscaf 20818 Cn ccn 23162 ×t ctx 23498 TopMndctmd 24008 TopRingctrg 24094 TopModctlm 24096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-tlm 24100 |
| This theorem is referenced by: cnmpt1vsca 24132 cnmpt2vsca 24133 |
| Copyright terms: Public domain | W3C validator |