Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vscacn | Structured version Visualization version GIF version |
Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istlm.s | ⊢ · = ( ·sf ‘𝑊) |
istlm.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
istlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
istlm.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
Ref | Expression |
---|---|
vscacn | ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istlm.s | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
2 | istlm.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | istlm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | istlm.k | . . 3 ⊢ 𝐾 = (TopOpen‘𝐹) | |
5 | 1, 2, 3, 4 | istlm 23336 | . 2 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) |
6 | 5 | simprbi 497 | 1 ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Scalarcsca 16965 TopOpenctopn 17132 LModclmod 20123 ·sf cscaf 20124 Cn ccn 22375 ×t ctx 22711 TopMndctmd 23221 TopRingctrg 23307 TopModctlm 23309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-tlm 23313 |
This theorem is referenced by: cnmpt1vsca 23345 cnmpt2vsca 23346 |
Copyright terms: Public domain | W3C validator |