MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vscacn Structured version   Visualization version   GIF version

Theorem vscacn 24080
Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s · = ( ·sf𝑊)
istlm.j 𝐽 = (TopOpen‘𝑊)
istlm.f 𝐹 = (Scalar‘𝑊)
istlm.k 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
vscacn (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem vscacn
StepHypRef Expression
1 istlm.s . . 3 · = ( ·sf𝑊)
2 istlm.j . . 3 𝐽 = (TopOpen‘𝑊)
3 istlm.f . . 3 𝐹 = (Scalar‘𝑊)
4 istlm.k . . 3 𝐾 = (TopOpen‘𝐹)
51, 2, 3, 4istlm 24079 . 2 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
65simprbi 496 1 (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Scalarcsca 17230  TopOpenctopn 17391  LModclmod 20773   ·sf cscaf 20774   Cn ccn 23118   ×t ctx 23454  TopMndctmd 23964  TopRingctrg 24050  TopModctlm 24052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-tlm 24056
This theorem is referenced by:  cnmpt1vsca  24088  cnmpt2vsca  24089
  Copyright terms: Public domain W3C validator