![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vscacn | Structured version Visualization version GIF version |
Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istlm.s | ⊢ · = ( ·sf ‘𝑊) |
istlm.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
istlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
istlm.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
Ref | Expression |
---|---|
vscacn | ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istlm.s | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
2 | istlm.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | istlm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | istlm.k | . . 3 ⊢ 𝐾 = (TopOpen‘𝐹) | |
5 | 1, 2, 3, 4 | istlm 24214 | . 2 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) |
6 | 5 | simprbi 496 | 1 ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Scalarcsca 17314 TopOpenctopn 17481 LModclmod 20880 ·sf cscaf 20881 Cn ccn 23253 ×t ctx 23589 TopMndctmd 24099 TopRingctrg 24185 TopModctlm 24187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tlm 24191 |
This theorem is referenced by: cnmpt1vsca 24223 cnmpt2vsca 24224 |
Copyright terms: Public domain | W3C validator |