Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vscacn | Structured version Visualization version GIF version |
Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istlm.s | ⊢ · = ( ·sf ‘𝑊) |
istlm.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
istlm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
istlm.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
Ref | Expression |
---|---|
vscacn | ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istlm.s | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
2 | istlm.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | istlm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | istlm.k | . . 3 ⊢ 𝐾 = (TopOpen‘𝐹) | |
5 | 1, 2, 3, 4 | istlm 23082 | . 2 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) |
6 | 5 | simprbi 500 | 1 ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Scalarcsca 16805 TopOpenctopn 16926 LModclmod 19899 ·sf cscaf 19900 Cn ccn 22121 ×t ctx 22457 TopMndctmd 22967 TopRingctrg 23053 TopModctlm 23055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-tlm 23059 |
This theorem is referenced by: cnmpt1vsca 23091 cnmpt2vsca 23092 |
Copyright terms: Public domain | W3C validator |