MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vscacn Structured version   Visualization version   GIF version

Theorem vscacn 23690
Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istlm.s Β· = ( Β·sf β€˜π‘Š)
istlm.j 𝐽 = (TopOpenβ€˜π‘Š)
istlm.f 𝐹 = (Scalarβ€˜π‘Š)
istlm.k 𝐾 = (TopOpenβ€˜πΉ)
Assertion
Ref Expression
vscacn (π‘Š ∈ TopMod β†’ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))

Proof of Theorem vscacn
StepHypRef Expression
1 istlm.s . . 3 Β· = ( Β·sf β€˜π‘Š)
2 istlm.j . . 3 𝐽 = (TopOpenβ€˜π‘Š)
3 istlm.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
4 istlm.k . . 3 𝐾 = (TopOpenβ€˜πΉ)
51, 2, 3, 4istlm 23689 . 2 (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽)))
65simprbi 498 1 (π‘Š ∈ TopMod β†’ Β· ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  (class class class)co 7409  Scalarcsca 17200  TopOpenctopn 17367  LModclmod 20471   Β·sf cscaf 20472   Cn ccn 22728   Γ—t ctx 23064  TopMndctmd 23574  TopRingctrg 23660  TopModctlm 23662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-tlm 23666
This theorem is referenced by:  cnmpt1vsca  23698  cnmpt2vsca  23699
  Copyright terms: Public domain W3C validator