MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtps Structured version   Visualization version   GIF version

Theorem tlmtps 24131
Description: A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtps (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)

Proof of Theorem tlmtps
StepHypRef Expression
1 tlmtmd 24130 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
2 tmdtps 24019 . 2 (𝑊 ∈ TopMnd → 𝑊 ∈ TopSp)
31, 2syl 17 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  TopSpctps 22875  TopMndctmd 24013  TopModctlm 24101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-tmd 24015  df-tlm 24105
This theorem is referenced by:  cnmpt1vsca  24137  cnmpt2vsca  24138  tlmtgp  24139
  Copyright terms: Public domain W3C validator