| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tlmtps | Structured version Visualization version GIF version | ||
| Description: A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtps | ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtmd 24050 | . 2 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) | |
| 2 | tmdtps 23939 | . 2 ⊢ (𝑊 ∈ TopMnd → 𝑊 ∈ TopSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 TopSpctps 22795 TopMndctmd 23933 TopModctlm 24021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-tmd 23935 df-tlm 24025 |
| This theorem is referenced by: cnmpt1vsca 24057 cnmpt2vsca 24058 tlmtgp 24059 |
| Copyright terms: Public domain | W3C validator |