MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  l2p Structured version   Visualization version   GIF version

Theorem l2p 30415
Description: For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.)
Hypothesis
Ref Expression
l2p.1 𝑃 = 𝐺
Assertion
Ref Expression
l2p ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))
Distinct variable groups:   𝑎,𝑏,𝐺   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏

Proof of Theorem l2p
Dummy variables 𝑐 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 l2p.1 . . . . 5 𝑃 = 𝐺
21isplig 30412 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
3 eleq2 2818 . . . . . . . 8 (𝑙 = 𝐿 → (𝑎𝑙𝑎𝐿))
4 eleq2 2818 . . . . . . . 8 (𝑙 = 𝐿 → (𝑏𝑙𝑏𝐿))
53, 43anbi23d 1441 . . . . . . 7 (𝑙 = 𝐿 → ((𝑎𝑏𝑎𝑙𝑏𝑙) ↔ (𝑎𝑏𝑎𝐿𝑏𝐿)))
652rexbidv 3203 . . . . . 6 (𝑙 = 𝐿 → (∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
76rspccv 3588 . . . . 5 (∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
873ad2ant2 1134 . . . 4 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
92, 8biimtrdi 253 . . 3 (𝐺 ∈ Plig → (𝐺 ∈ Plig → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))))
109pm2.43i 52 . 2 (𝐺 ∈ Plig → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
1110imp 406 1 ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354   cuni 4874  Pligcplig 30410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-v 3452  df-ss 3934  df-uni 4875  df-plig 30411
This theorem is referenced by:  nsnlplig  30417  nsnlpligALT  30418  n0lpligALT  30420
  Copyright terms: Public domain W3C validator