Step | Hyp | Ref
| Expression |
1 | | l2p.1 |
. . . . 5
⊢ 𝑃 = ∪
𝐺 |
2 | 1 | isplig 28739 |
. . . 4
⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔
(∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) |
3 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑙 = 𝐿 → (𝑎 ∈ 𝑙 ↔ 𝑎 ∈ 𝐿)) |
4 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑙 = 𝐿 → (𝑏 ∈ 𝑙 ↔ 𝑏 ∈ 𝐿)) |
5 | 3, 4 | 3anbi23d 1437 |
. . . . . . 7
⊢ (𝑙 = 𝐿 → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
6 | 5 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑙 = 𝐿 → (∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ↔ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
7 | 6 | rspccv 3549 |
. . . . 5
⊢
(∀𝑙 ∈
𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
8 | 7 | 3ad2ant2 1132 |
. . . 4
⊢
((∀𝑎 ∈
𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
9 | 2, 8 | syl6bi 252 |
. . 3
⊢ (𝐺 ∈ Plig → (𝐺 ∈ Plig → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)))) |
10 | 9 | pm2.43i 52 |
. 2
⊢ (𝐺 ∈ Plig → (𝐿 ∈ 𝐺 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿))) |
11 | 10 | imp 406 |
1
⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) |