MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  l2p Structured version   Visualization version   GIF version

Theorem l2p 30282
Description: For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.)
Hypothesis
Ref Expression
l2p.1 𝑃 = 𝐺
Assertion
Ref Expression
l2p ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))
Distinct variable groups:   𝑎,𝑏,𝐺   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏

Proof of Theorem l2p
Dummy variables 𝑐 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 l2p.1 . . . . 5 𝑃 = 𝐺
21isplig 30279 . . . 4 (𝐺 ∈ Plig → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
3 eleq2 2817 . . . . . . . 8 (𝑙 = 𝐿 → (𝑎𝑙𝑎𝐿))
4 eleq2 2817 . . . . . . . 8 (𝑙 = 𝐿 → (𝑏𝑙𝑏𝐿))
53, 43anbi23d 1436 . . . . . . 7 (𝑙 = 𝐿 → ((𝑎𝑏𝑎𝑙𝑏𝑙) ↔ (𝑎𝑏𝑎𝐿𝑏𝐿)))
652rexbidv 3214 . . . . . 6 (𝑙 = 𝐿 → (∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ↔ ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
76rspccv 3604 . . . . 5 (∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
873ad2ant2 1132 . . . 4 ((∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙)) → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
92, 8biimtrdi 252 . . 3 (𝐺 ∈ Plig → (𝐺 ∈ Plig → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))))
109pm2.43i 52 . 2 (𝐺 ∈ Plig → (𝐿𝐺 → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿)))
1110imp 406 1 ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  ∃!wreu 3369   cuni 4903  Pligcplig 30277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1537  df-ex 1775  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-v 3471  df-in 3951  df-ss 3961  df-uni 4904  df-plig 30278
This theorem is referenced by:  nsnlplig  30284  nsnlpligALT  30285  n0lpligALT  30287
  Copyright terms: Public domain W3C validator