MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trggrp Structured version   Visualization version   GIF version

Theorem trggrp 23231
Description: A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trggrp (𝑅 ∈ TopRing → 𝑅 ∈ Grp)

Proof of Theorem trggrp
StepHypRef Expression
1 trgring 23230 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
2 ringgrp 19703 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18492  Ringcrg 19698  TopRingctrg 23215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-ring 19700  df-trg 23219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator