MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trggrp Structured version   Visualization version   GIF version

Theorem trggrp 24087
Description: A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trggrp (𝑅 ∈ TopRing → 𝑅 ∈ Grp)

Proof of Theorem trggrp
StepHypRef Expression
1 trgring 24086 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
2 ringgrp 20156 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Grpcgrp 18846  Ringcrg 20151  TopRingctrg 24071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-ring 20153  df-trg 24075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator