Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringgrp | Structured version Visualization version GIF version |
Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
ringgrp | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2739 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2739 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 19796 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp1bi 1144 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
Copyright terms: Public domain | W3C validator |