MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgtrg Structured version   Visualization version   GIF version

Theorem tdrgtrg 23430
Description: A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgtrg (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)

Proof of Theorem tdrgtrg
StepHypRef Expression
1 eqid 2736 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2736 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 23423 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
43simp1bi 1144 1 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6479  (class class class)co 7337  s cress 17038  mulGrpcmgp 19815  Unitcui 19976  DivRingcdr 20093  TopGrpctgp 23328  TopRingctrg 23413  TopDRingctdrg 23414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340  df-tdrg 23418
This theorem is referenced by:  tdrgring  23432  tdrgtmd  23433  tdrgtps  23434  dvrcn  23441
  Copyright terms: Public domain W3C validator