Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tdrgtrg | Structured version Visualization version GIF version |
Description: A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tdrgtrg | ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 23317 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)) |
4 | 3 | simp1bi 1144 | 1 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 mulGrpcmgp 19720 Unitcui 19881 DivRingcdr 19991 TopGrpctgp 23222 TopRingctrg 23307 TopDRingctdrg 23308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-tdrg 23312 |
This theorem is referenced by: tdrgring 23326 tdrgtmd 23327 tdrgtps 23328 dvrcn 23335 |
Copyright terms: Public domain | W3C validator |