| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdrgtrg | Structured version Visualization version GIF version | ||
| Description: A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tdrgtrg | ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | 1, 2 | istdrg 24081 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ↾s cress 17141 mulGrpcmgp 20058 Unitcui 20273 DivRingcdr 20644 TopGrpctgp 23986 TopRingctrg 24071 TopDRingctdrg 24072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-tdrg 24076 |
| This theorem is referenced by: tdrgring 24090 tdrgtmd 24091 tdrgtps 24092 dvrcn 24099 |
| Copyright terms: Public domain | W3C validator |