MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdrgtrg Structured version   Visualization version   GIF version

Theorem tdrgtrg 23324
Description: A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tdrgtrg (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)

Proof of Theorem tdrgtrg
StepHypRef Expression
1 eqid 2738 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2738 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 23317 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
43simp1bi 1144 1 (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  (class class class)co 7275  s cress 16941  mulGrpcmgp 19720  Unitcui 19881  DivRingcdr 19991  TopGrpctgp 23222  TopRingctrg 23307  TopDRingctdrg 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-tdrg 23312
This theorem is referenced by:  tdrgring  23326  tdrgtmd  23327  tdrgtps  23328  dvrcn  23335
  Copyright terms: Public domain W3C validator