Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trgring | Structured version Visualization version GIF version |
Description: A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgring | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | istrg 23387 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
3 | 2 | simp2bi 1145 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6465 mulGrpcmgp 19788 Ringcrg 19851 TopMndctmd 23293 TopGrpctgp 23294 TopRingctrg 23379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 df-trg 23383 |
This theorem is referenced by: trggrp 23395 tdrgring 23398 |
Copyright terms: Public domain | W3C validator |