MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgring Structured version   Visualization version   GIF version

Theorem trgring 23394
Description: A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgring (𝑅 ∈ TopRing → 𝑅 ∈ Ring)

Proof of Theorem trgring
StepHypRef Expression
1 eqid 2737 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 23387 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp2bi 1145 1 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6465  mulGrpcmgp 19788  Ringcrg 19851  TopMndctmd 23293  TopGrpctgp 23294  TopRingctrg 23379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6417  df-fv 6473  df-trg 23383
This theorem is referenced by:  trggrp  23395  tdrgring  23398
  Copyright terms: Public domain W3C validator