MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgring Structured version   Visualization version   GIF version

Theorem trgring 24065
Description: A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgring (𝑅 ∈ TopRing → 𝑅 ∈ Ring)

Proof of Theorem trgring
StepHypRef Expression
1 eqid 2730 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 24058 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp2bi 1146 1 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6514  mulGrpcmgp 20056  Ringcrg 20149  TopMndctmd 23964  TopGrpctgp 23965  TopRingctrg 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-trg 24054
This theorem is referenced by:  trggrp  24066  tdrgring  24069
  Copyright terms: Public domain W3C validator