MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgring Structured version   Visualization version   GIF version

Theorem trgring 24081
Description: A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgring (𝑅 ∈ TopRing → 𝑅 ∈ Ring)

Proof of Theorem trgring
StepHypRef Expression
1 eqid 2731 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21istrg 24074 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
32simp2bi 1146 1 (𝑅 ∈ TopRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6476  mulGrpcmgp 20053  Ringcrg 20146  TopMndctmd 23980  TopGrpctgp 23981  TopRingctrg 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-trg 24070
This theorem is referenced by:  trggrp  24082  tdrgring  24085
  Copyright terms: Public domain W3C validator