Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trsucss | Structured version Visualization version GIF version |
Description: A member of the successor of a transitive class is a subclass of it. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
trsucss | ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6235 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | trss 5147 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | eqimss 3948 | . . . 4 ⊢ (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴) | |
4 | 3 | a1i 11 | . . 3 ⊢ (Tr 𝐴 → (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴)) |
5 | 2, 4 | jaod 856 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | syl5 34 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 Tr wtr 5138 suc csuc 6171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-uni 4799 df-tr 5139 df-suc 6175 |
This theorem is referenced by: efgmnvl 18907 |
Copyright terms: Public domain | W3C validator |