![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trsucss | Structured version Visualization version GIF version |
Description: A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.) |
Ref | Expression |
---|---|
trsucss | ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6459 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | trss 5279 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | eqimss 4057 | . . . 4 ⊢ (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴) | |
4 | 3 | a1i 11 | . . 3 ⊢ (Tr 𝐴 → (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴)) |
5 | 2, 4 | jaod 860 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | syl5 34 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 Tr wtr 5268 suc csuc 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3483 df-un 3971 df-ss 3983 df-sn 4635 df-uni 4916 df-tr 5269 df-suc 6398 |
This theorem is referenced by: efgmnvl 19756 ordsssucim 43408 |
Copyright terms: Public domain | W3C validator |