| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trsucss | Structured version Visualization version GIF version | ||
| Description: A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.) |
| Ref | Expression |
|---|---|
| trsucss | ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci 6375 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
| 2 | trss 5206 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | eqimss 3988 | . . . 4 ⊢ (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (Tr 𝐴 → (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴)) |
| 5 | 2, 4 | jaod 859 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → 𝐵 ⊆ 𝐴)) |
| 6 | 1, 5 | syl5 34 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 Tr wtr 5196 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-uni 4857 df-tr 5197 df-suc 6312 |
| This theorem is referenced by: efgmnvl 19626 ordsssucim 43443 |
| Copyright terms: Public domain | W3C validator |