MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsucss Structured version   Visualization version   GIF version

Theorem trsucss 6451
Description: A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
trsucss (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))

Proof of Theorem trsucss
StepHypRef Expression
1 elsuci 6430 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 trss 5250 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
3 eqimss 4022 . . . 4 (𝐵 = 𝐴𝐵𝐴)
43a1i 11 . . 3 (Tr 𝐴 → (𝐵 = 𝐴𝐵𝐴))
52, 4jaod 859 . 2 (Tr 𝐴 → ((𝐵𝐴𝐵 = 𝐴) → 𝐵𝐴))
61, 5syl5 34 1 (Tr 𝐴 → (𝐵 ∈ suc 𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wcel 2107  wss 3931  Tr wtr 5239  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-v 3465  df-un 3936  df-ss 3948  df-sn 4607  df-uni 4888  df-tr 5240  df-suc 6369
This theorem is referenced by:  efgmnvl  19699  ordsssucim  43353
  Copyright terms: Public domain W3C validator