| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trsucss | Structured version Visualization version GIF version | ||
| Description: A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 4-Oct-2003.) |
| Ref | Expression |
|---|---|
| trsucss | ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci 6409 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
| 2 | trss 5233 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | eqimss 4013 | . . . 4 ⊢ (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (Tr 𝐴 → (𝐵 = 𝐴 → 𝐵 ⊆ 𝐴)) |
| 5 | 2, 4 | jaod 859 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → 𝐵 ⊆ 𝐴)) |
| 6 | 1, 5 | syl5 34 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ suc 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 Tr wtr 5222 suc csuc 6342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-v 3457 df-un 3927 df-ss 3939 df-sn 4598 df-uni 4880 df-tr 5223 df-suc 6346 |
| This theorem is referenced by: efgmnvl 19650 ordsssucim 43363 |
| Copyright terms: Public domain | W3C validator |