MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Visualization version   GIF version

Theorem efgmnvl 19593
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmnvl (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmnvl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5643 . 2 (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩)
2 efgmval.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
32efgmval 19591 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
43fveq2d 6826 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩))
5 df-ov 7352 . . . . . 6 (𝑎𝑀(1o𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩)
64, 5eqtr4di 2782 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1o𝑏)))
7 2oconcl 8421 . . . . . 6 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
82efgmval 19591 . . . . . 6 ((𝑎𝐼 ∧ (1o𝑏) ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
97, 8sylan2 593 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
10 1on 8400 . . . . . . . . . . 11 1o ∈ On
1110onordi 6420 . . . . . . . . . 10 Ord 1o
12 ordtr 6321 . . . . . . . . . 10 (Ord 1o → Tr 1o)
13 trsucss 6397 . . . . . . . . . 10 (Tr 1o → (𝑏 ∈ suc 1o𝑏 ⊆ 1o))
1411, 12, 13mp2b 10 . . . . . . . . 9 (𝑏 ∈ suc 1o𝑏 ⊆ 1o)
15 df-2o 8389 . . . . . . . . 9 2o = suc 1o
1614, 15eleq2s 2846 . . . . . . . 8 (𝑏 ∈ 2o𝑏 ⊆ 1o)
1716adantl 481 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → 𝑏 ⊆ 1o)
18 dfss4 4220 . . . . . . 7 (𝑏 ⊆ 1o ↔ (1o ∖ (1o𝑏)) = 𝑏)
1917, 18sylib 218 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (1o ∖ (1o𝑏)) = 𝑏)
2019opeq2d 4831 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, (1o ∖ (1o𝑏))⟩ = ⟨𝑎, 𝑏⟩)
216, 9, 203eqtrd 2768 . . . 4 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩)
22 fveq2 6822 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7352 . . . . . . 7 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2782 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
2524fveq2d 6826 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = (𝑀‘(𝑎𝑀𝑏)))
26 id 22 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → 𝐴 = ⟨𝑎, 𝑏⟩)
2725, 26eqeq12d 2745 . . . 4 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑀‘(𝑀𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩))
2821, 27syl5ibrcom 247 . . 3 ((𝑎𝐼𝑏 ∈ 2o) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴))
2928rexlimivv 3171 . 2 (∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴)
301, 29sylbi 217 1 (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3900  wss 3903  cop 4583  Tr wtr 5199   × cxp 5617  Ord word 6306  suc csuc 6309  cfv 6482  (class class class)co 7349  cmpo 7351  1oc1o 8381  2oc2o 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1o 8388  df-2o 8389
This theorem is referenced by:  efginvrel1  19607  efgredlemc  19624
  Copyright terms: Public domain W3C validator