MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Visualization version   GIF version

Theorem efgmnvl 19301
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmnvl (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmnvl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5612 . 2 (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩)
2 efgmval.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
32efgmval 19299 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
43fveq2d 6772 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩))
5 df-ov 7271 . . . . . 6 (𝑎𝑀(1o𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩)
64, 5eqtr4di 2797 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1o𝑏)))
7 2oconcl 8309 . . . . . 6 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
82efgmval 19299 . . . . . 6 ((𝑎𝐼 ∧ (1o𝑏) ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
97, 8sylan2 592 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
10 1on 8288 . . . . . . . . . . 11 1o ∈ On
1110onordi 6368 . . . . . . . . . 10 Ord 1o
12 ordtr 6277 . . . . . . . . . 10 (Ord 1o → Tr 1o)
13 trsucss 6348 . . . . . . . . . 10 (Tr 1o → (𝑏 ∈ suc 1o𝑏 ⊆ 1o))
1411, 12, 13mp2b 10 . . . . . . . . 9 (𝑏 ∈ suc 1o𝑏 ⊆ 1o)
15 df-2o 8282 . . . . . . . . 9 2o = suc 1o
1614, 15eleq2s 2858 . . . . . . . 8 (𝑏 ∈ 2o𝑏 ⊆ 1o)
1716adantl 481 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → 𝑏 ⊆ 1o)
18 dfss4 4197 . . . . . . 7 (𝑏 ⊆ 1o ↔ (1o ∖ (1o𝑏)) = 𝑏)
1917, 18sylib 217 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (1o ∖ (1o𝑏)) = 𝑏)
2019opeq2d 4816 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, (1o ∖ (1o𝑏))⟩ = ⟨𝑎, 𝑏⟩)
216, 9, 203eqtrd 2783 . . . 4 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩)
22 fveq2 6768 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7271 . . . . . . 7 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2797 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
2524fveq2d 6772 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = (𝑀‘(𝑎𝑀𝑏)))
26 id 22 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → 𝐴 = ⟨𝑎, 𝑏⟩)
2725, 26eqeq12d 2755 . . . 4 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑀‘(𝑀𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩))
2821, 27syl5ibrcom 246 . . 3 ((𝑎𝐼𝑏 ∈ 2o) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴))
2928rexlimivv 3222 . 2 (∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴)
301, 29sylbi 216 1 (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066  cdif 3888  wss 3891  cop 4572  Tr wtr 5195   × cxp 5586  Ord word 6262  suc csuc 6265  cfv 6430  (class class class)co 7268  cmpo 7270  1oc1o 8274  2oc2o 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-ord 6266  df-on 6267  df-suc 6269  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1o 8281  df-2o 8282
This theorem is referenced by:  efginvrel1  19315  efgredlemc  19332
  Copyright terms: Public domain W3C validator