MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Visualization version   GIF version

Theorem efgmnvl 19732
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmnvl (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmnvl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5709 . 2 (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩)
2 efgmval.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
32efgmval 19730 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
43fveq2d 6910 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩))
5 df-ov 7434 . . . . . 6 (𝑎𝑀(1o𝑏)) = (𝑀‘⟨𝑎, (1o𝑏)⟩)
64, 5eqtr4di 2795 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1o𝑏)))
7 2oconcl 8541 . . . . . 6 (𝑏 ∈ 2o → (1o𝑏) ∈ 2o)
82efgmval 19730 . . . . . 6 ((𝑎𝐼 ∧ (1o𝑏) ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
97, 8sylan2 593 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀(1o𝑏)) = ⟨𝑎, (1o ∖ (1o𝑏))⟩)
10 1on 8518 . . . . . . . . . . 11 1o ∈ On
1110onordi 6495 . . . . . . . . . 10 Ord 1o
12 ordtr 6398 . . . . . . . . . 10 (Ord 1o → Tr 1o)
13 trsucss 6472 . . . . . . . . . 10 (Tr 1o → (𝑏 ∈ suc 1o𝑏 ⊆ 1o))
1411, 12, 13mp2b 10 . . . . . . . . 9 (𝑏 ∈ suc 1o𝑏 ⊆ 1o)
15 df-2o 8507 . . . . . . . . 9 2o = suc 1o
1614, 15eleq2s 2859 . . . . . . . 8 (𝑏 ∈ 2o𝑏 ⊆ 1o)
1716adantl 481 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2o) → 𝑏 ⊆ 1o)
18 dfss4 4269 . . . . . . 7 (𝑏 ⊆ 1o ↔ (1o ∖ (1o𝑏)) = 𝑏)
1917, 18sylib 218 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2o) → (1o ∖ (1o𝑏)) = 𝑏)
2019opeq2d 4880 . . . . 5 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, (1o ∖ (1o𝑏))⟩ = ⟨𝑎, 𝑏⟩)
216, 9, 203eqtrd 2781 . . . 4 ((𝑎𝐼𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩)
22 fveq2 6906 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7434 . . . . . . 7 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2795 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
2524fveq2d 6910 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = (𝑀‘(𝑎𝑀𝑏)))
26 id 22 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → 𝐴 = ⟨𝑎, 𝑏⟩)
2725, 26eqeq12d 2753 . . . 4 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑀‘(𝑀𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩))
2821, 27syl5ibrcom 247 . . 3 ((𝑎𝐼𝑏 ∈ 2o) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴))
2928rexlimivv 3201 . 2 (∃𝑎𝐼𝑏 ∈ 2o 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴)
301, 29sylbi 217 1 (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  cdif 3948  wss 3951  cop 4632  Tr wtr 5259   × cxp 5683  Ord word 6383  suc csuc 6386  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499  2oc2o 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1o 8506  df-2o 8507
This theorem is referenced by:  efginvrel1  19746  efgredlemc  19763
  Copyright terms: Public domain W3C validator