Step | Hyp | Ref
| Expression |
1 | | elxp2 5612 |
. 2
⊢ (𝐴 ∈ (𝐼 × 2o) ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 2o 𝐴 = 〈𝑎, 𝑏〉) |
2 | | efgmval.m |
. . . . . . . 8
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
3 | 2 | efgmval 19299 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑎𝑀𝑏) = 〈𝑎, (1o ∖ 𝑏)〉) |
4 | 3 | fveq2d 6772 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘〈𝑎, (1o ∖ 𝑏)〉)) |
5 | | df-ov 7271 |
. . . . . 6
⊢ (𝑎𝑀(1o ∖ 𝑏)) = (𝑀‘〈𝑎, (1o ∖ 𝑏)〉) |
6 | 4, 5 | eqtr4di 2797 |
. . . . 5
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1o ∖ 𝑏))) |
7 | | 2oconcl 8309 |
. . . . . 6
⊢ (𝑏 ∈ 2o →
(1o ∖ 𝑏)
∈ 2o) |
8 | 2 | efgmval 19299 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐼 ∧ (1o ∖ 𝑏) ∈ 2o) →
(𝑎𝑀(1o ∖ 𝑏)) = 〈𝑎, (1o ∖ (1o
∖ 𝑏))〉) |
9 | 7, 8 | sylan2 592 |
. . . . 5
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑎𝑀(1o ∖ 𝑏)) = 〈𝑎, (1o ∖ (1o
∖ 𝑏))〉) |
10 | | 1on 8288 |
. . . . . . . . . . 11
⊢
1o ∈ On |
11 | 10 | onordi 6368 |
. . . . . . . . . 10
⊢ Ord
1o |
12 | | ordtr 6277 |
. . . . . . . . . 10
⊢ (Ord
1o → Tr 1o) |
13 | | trsucss 6348 |
. . . . . . . . . 10
⊢ (Tr
1o → (𝑏
∈ suc 1o → 𝑏 ⊆ 1o)) |
14 | 11, 12, 13 | mp2b 10 |
. . . . . . . . 9
⊢ (𝑏 ∈ suc 1o →
𝑏 ⊆
1o) |
15 | | df-2o 8282 |
. . . . . . . . 9
⊢
2o = suc 1o |
16 | 14, 15 | eleq2s 2858 |
. . . . . . . 8
⊢ (𝑏 ∈ 2o →
𝑏 ⊆
1o) |
17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → 𝑏 ⊆
1o) |
18 | | dfss4 4197 |
. . . . . . 7
⊢ (𝑏 ⊆ 1o ↔
(1o ∖ (1o ∖ 𝑏)) = 𝑏) |
19 | 17, 18 | sylib 217 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (1o
∖ (1o ∖ 𝑏)) = 𝑏) |
20 | 19 | opeq2d 4816 |
. . . . 5
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → 〈𝑎, (1o ∖
(1o ∖ 𝑏))〉 = 〈𝑎, 𝑏〉) |
21 | 6, 9, 20 | 3eqtrd 2783 |
. . . 4
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝑀‘(𝑎𝑀𝑏)) = 〈𝑎, 𝑏〉) |
22 | | fveq2 6768 |
. . . . . . 7
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑀‘〈𝑎, 𝑏〉)) |
23 | | df-ov 7271 |
. . . . . . 7
⊢ (𝑎𝑀𝑏) = (𝑀‘〈𝑎, 𝑏〉) |
24 | 22, 23 | eqtr4di 2797 |
. . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑎𝑀𝑏)) |
25 | 24 | fveq2d 6772 |
. . . . 5
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘(𝑀‘𝐴)) = (𝑀‘(𝑎𝑀𝑏))) |
26 | | id 22 |
. . . . 5
⊢ (𝐴 = 〈𝑎, 𝑏〉 → 𝐴 = 〈𝑎, 𝑏〉) |
27 | 25, 26 | eqeq12d 2755 |
. . . 4
⊢ (𝐴 = 〈𝑎, 𝑏〉 → ((𝑀‘(𝑀‘𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = 〈𝑎, 𝑏〉)) |
28 | 21, 27 | syl5ibrcom 246 |
. . 3
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o) → (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘(𝑀‘𝐴)) = 𝐴)) |
29 | 28 | rexlimivv 3222 |
. 2
⊢
(∃𝑎 ∈
𝐼 ∃𝑏 ∈ 2o 𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
30 | 1, 29 | sylbi 216 |
1
⊢ (𝐴 ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘𝐴)) = 𝐴) |