MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsuc Structured version   Visualization version   GIF version

Theorem trsuc 6471
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 trel 5268 . 2 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
2 sssucid 6464 . . . . 5 𝐵 ⊆ suc 𝐵
3 ssexg 5323 . . . . 5 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
42, 3mpan 690 . . . 4 (suc 𝐵𝐴𝐵 ∈ V)
5 sucidg 6465 . . . 4 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
64, 5syl 17 . . 3 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
76ancri 549 . 2 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
81, 7impel 505 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3480  wss 3951  Tr wtr 5259  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-un 3956  df-in 3958  df-ss 3968  df-sn 4627  df-uni 4908  df-tr 5260  df-suc 6390
This theorem is referenced by:  onuninsuci  7861  limsuc  7870  tz7.44-2  8447  cantnflt  9712  cantnfp1lem3  9720  cantnflem1b  9726  cantnflem1  9729  cnfcom  9740  axdc3lem2  10491  inar1  10815  bnj967  34959  limsuc2  43053
  Copyright terms: Public domain W3C validator