![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trel 5292 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
2 | sssucid 6475 | . . . . 5 ⊢ 𝐵 ⊆ suc 𝐵 | |
3 | ssexg 5341 | . . . . 5 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
4 | 2, 3 | mpan 689 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
5 | sucidg 6476 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
7 | 6 | ancri 549 | . 2 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
8 | 1, 7 | impel 505 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 Tr wtr 5283 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-sn 4649 df-uni 4932 df-tr 5284 df-suc 6401 |
This theorem is referenced by: onuninsuci 7877 limsuc 7886 tz7.44-2 8463 cantnflt 9741 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1 9758 cnfcom 9769 axdc3lem2 10520 inar1 10844 bnj967 34921 limsuc2 42998 |
Copyright terms: Public domain | W3C validator |