MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsuc Structured version   Visualization version   GIF version

Theorem trsuc 6452
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 trel 5275 . 2 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
2 sssucid 6445 . . . . 5 𝐵 ⊆ suc 𝐵
3 ssexg 5324 . . . . 5 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
42, 3mpan 689 . . . 4 (suc 𝐵𝐴𝐵 ∈ V)
5 sucidg 6446 . . . 4 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
64, 5syl 17 . . 3 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
76ancri 551 . 2 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
81, 7impel 507 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  Vcvv 3475  wss 3949  Tr wtr 5266  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-uni 4910  df-tr 5267  df-suc 6371
This theorem is referenced by:  onuninsuci  7829  limsuc  7838  tz7.44-2  8407  cantnflt  9667  cantnfp1lem3  9675  cantnflem1b  9681  cantnflem1  9684  cnfcom  9695  axdc3lem2  10446  inar1  10770  bnj967  33956  limsuc2  41783
  Copyright terms: Public domain W3C validator