| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version GIF version | ||
| Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trel 5207 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
| 2 | sssucid 6389 | . . . . 5 ⊢ 𝐵 ⊆ suc 𝐵 | |
| 3 | ssexg 5262 | . . . . 5 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
| 4 | 2, 3 | mpan 690 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
| 5 | sucidg 6390 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
| 7 | 6 | ancri 549 | . 2 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
| 8 | 1, 7 | impel 505 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 Tr wtr 5199 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-sn 4578 df-uni 4859 df-tr 5200 df-suc 6313 |
| This theorem is referenced by: onuninsuci 7773 limsuc 7782 tz7.44-2 8329 cantnflt 9568 cantnfp1lem3 9576 cantnflem1b 9582 cantnflem1 9585 cnfcom 9596 axdc3lem2 10345 inar1 10669 bnj967 34912 limsuc2 43014 |
| Copyright terms: Public domain | W3C validator |