![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trel 4984 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
2 | sssucid 6044 | . . . . 5 ⊢ 𝐵 ⊆ suc 𝐵 | |
3 | ssexg 5031 | . . . . 5 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
4 | 2, 3 | mpan 681 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
5 | sucidg 6045 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
7 | 6 | ancri 545 | . 2 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
8 | 1, 7 | impel 501 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 Vcvv 3414 ⊆ wss 3798 Tr wtr 4977 suc csuc 5969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 ax-sep 5007 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-un 3803 df-in 3805 df-ss 3812 df-sn 4400 df-uni 4661 df-tr 4978 df-suc 5973 |
This theorem is referenced by: onuninsuci 7306 limsuc 7315 tz7.44-2 7774 cantnflt 8853 cantnfp1lem3 8861 cantnflem1b 8867 cantnflem1 8870 cnfcom 8881 axdc3lem2 9595 inar1 9919 bnj967 31557 limsuc2 38449 |
Copyright terms: Public domain | W3C validator |