MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsuc Structured version   Visualization version   GIF version

Theorem trsuc 6421
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 trel 5223 . 2 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
2 sssucid 6414 . . . . 5 𝐵 ⊆ suc 𝐵
3 ssexg 5278 . . . . 5 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
42, 3mpan 690 . . . 4 (suc 𝐵𝐴𝐵 ∈ V)
5 sucidg 6415 . . . 4 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
64, 5syl 17 . . 3 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
76ancri 549 . 2 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
81, 7impel 505 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  wss 3914  Tr wtr 5214  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-sn 4590  df-uni 4872  df-tr 5215  df-suc 6338
This theorem is referenced by:  onuninsuci  7816  limsuc  7825  tz7.44-2  8375  cantnflt  9625  cantnfp1lem3  9633  cantnflem1b  9639  cantnflem1  9642  cnfcom  9653  axdc3lem2  10404  inar1  10728  bnj967  34935  limsuc2  43030
  Copyright terms: Public domain W3C validator