Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trsuc | Structured version Visualization version GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trel 5194 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
2 | sssucid 6328 | . . . . 5 ⊢ 𝐵 ⊆ suc 𝐵 | |
3 | ssexg 5242 | . . . . 5 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
4 | 2, 3 | mpan 686 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
5 | sucidg 6329 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
7 | 6 | ancri 549 | . 2 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
8 | 1, 7 | impel 505 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 Tr wtr 5187 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-uni 4837 df-tr 5188 df-suc 6257 |
This theorem is referenced by: onuninsuci 7662 limsuc 7671 tz7.44-2 8209 cantnflt 9360 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 cnfcom 9388 axdc3lem2 10138 inar1 10462 bnj967 32825 limsuc2 40782 |
Copyright terms: Public domain | W3C validator |