| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsssuc | Structured version Visualization version GIF version | ||
| Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordsssuc | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6362 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordsseleq 6381 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 4 | elsucg 6422 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 6 | 3, 5 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 Oncon0 6352 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 |
| This theorem is referenced by: onsssuc 6444 ordunisssuc 6460 ordpwsuc 7809 ordsucun 7819 cantnflt 9686 cantnflem1 9703 noetasuplem4 27700 noetainflem4 27704 scutbdaybnd2lim 27781 ordsssucb 43359 |
| Copyright terms: Public domain | W3C validator |