MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc Structured version   Visualization version   GIF version

Theorem ordsssuc 6062
Description: A subset of an ordinal belongs to its successor. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordsssuc ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem ordsssuc
StepHypRef Expression
1 eloni 5986 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsseleq 6005 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2sylan 575 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
4 elsucg 6043 . . 3 (𝐴 ∈ On → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
54adantr 474 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
63, 5bitr4d 274 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wss 3792  Ord word 5975  Oncon0 5976  suc csuc 5978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-ord 5979  df-on 5980  df-suc 5982
This theorem is referenced by:  onsssuc  6063  ordunisssuc  6078  ordpwsuc  7293  ordsucun  7303  cantnflt  8866  cantnflem1  8883  noetalem3  32454
  Copyright terms: Public domain W3C validator