![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordsssuc | Structured version Visualization version GIF version |
Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordsssuc | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6379 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsseleq 6398 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
4 | elsucg 6437 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
6 | 3, 5 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 Ord word 6368 Oncon0 6369 suc csuc 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6372 df-on 6373 df-suc 6375 |
This theorem is referenced by: onsssuc 6459 ordunisssuc 6475 ordpwsuc 7818 ordsucun 7828 cantnflt 9695 cantnflem1 9712 noetasuplem4 27668 noetainflem4 27672 scutbdaybnd2lim 27749 ordsssucb 42764 |
Copyright terms: Public domain | W3C validator |