MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truni Structured version   Visualization version   GIF version

Theorem truni 4991
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truni
StepHypRef Expression
1 triun 4990 . 2 (∀𝑥𝐴 Tr 𝑥 → Tr 𝑥𝐴 𝑥)
2 uniiun 4795 . . 3 𝐴 = 𝑥𝐴 𝑥
3 treq 4983 . . 3 ( 𝐴 = 𝑥𝐴 𝑥 → (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥))
42, 3ax-mp 5 . 2 (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥)
51, 4sylibr 226 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1656  wral 3117   cuni 4660   ciun 4742  Tr wtr 4977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-v 3416  df-in 3805  df-ss 3812  df-uni 4661  df-iun 4744  df-tr 4978
This theorem is referenced by:  dfon2lem1  32221
  Copyright terms: Public domain W3C validator