![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > truni | Structured version Visualization version GIF version |
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
truni | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun 5280 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝑥 ∈ 𝐴 𝑥) | |
2 | uniiun 5063 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | treq 5273 | . . 3 ⊢ (∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 → (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥) |
5 | 1, 4 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∀wral 3059 ∪ cuni 4912 ∪ ciun 4996 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-uni 4913 df-iun 4998 df-tr 5266 |
This theorem is referenced by: dfon2lem1 35765 |
Copyright terms: Public domain | W3C validator |