![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > triin | Structured version Visualization version GIF version |
Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
Ref | Expression |
---|---|
triin | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 5001 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3483 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | r19.26 3109 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | trss 5276 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
5 | 4 | imp 406 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
6 | 5 | ralimi 3081 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
7 | 3, 6 | sylbir 235 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
8 | ssiin 5060 | . . . . 5 ⊢ (𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) | |
9 | 7, 8 | sylibr 234 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
10 | 2, 9 | sylan2b 594 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
11 | 10 | ralrimiva 3144 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
12 | dftr3 5271 | . 2 ⊢ (Tr ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) | |
13 | 11, 12 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∩ ciin 4997 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-v 3480 df-ss 3980 df-uni 4913 df-iin 4999 df-tr 5266 |
This theorem is referenced by: trint 5283 |
Copyright terms: Public domain | W3C validator |