Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > triin | Structured version Visualization version GIF version |
Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
Ref | Expression |
---|---|
triin | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 4929 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3438 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | r19.26 3095 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | trss 5200 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
5 | 4 | imp 407 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
6 | 5 | ralimi 3087 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
7 | 3, 6 | sylbir 234 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
8 | ssiin 4985 | . . . . 5 ⊢ (𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) | |
9 | 7, 8 | sylibr 233 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
10 | 2, 9 | sylan2b 594 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
11 | 10 | ralrimiva 3103 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
12 | dftr3 5195 | . 2 ⊢ (Tr ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) | |
13 | 11, 12 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∩ ciin 4925 Tr wtr 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-iin 4927 df-tr 5192 |
This theorem is referenced by: trint 5207 |
Copyright terms: Public domain | W3C validator |