| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > triin | Structured version Visualization version GIF version | ||
| Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| triin | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin 4956 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 2 | 1 | elv 3449 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | r19.26 3091 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 4 | trss 5220 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
| 5 | 4 | imp 406 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
| 6 | 5 | ralimi 3066 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
| 7 | 3, 6 | sylbir 235 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) |
| 8 | ssiin 5014 | . . . . 5 ⊢ (𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵) | |
| 9 | 7, 8 | sylibr 234 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
| 10 | 2, 9 | sylan2b 594 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
| 11 | 10 | ralrimiva 3125 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) |
| 12 | dftr3 5215 | . 2 ⊢ (Tr ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ∩ ciin 4952 Tr wtr 5209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-v 3446 df-ss 3928 df-uni 4868 df-iin 4954 df-tr 5210 |
| This theorem is referenced by: trint 5227 |
| Copyright terms: Public domain | W3C validator |