MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 23350
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (𝑊 ∈ TopVec → 𝑊 ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 23349 . 2 (𝑊 ∈ TopVec → 𝑊 ∈ LMod)
2 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
32tvctdrg 23344 . . 3 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing)
4 tdrgdrng 23325 . . 3 ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing)
53, 4syl 17 . 2 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing)
62islvec 20366 . 2 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
71, 5, 6sylanbrc 583 1 (𝑊 ∈ TopVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  Scalarcsca 16965  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364  TopDRingctdrg 23308  TopVecctvc 23310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-lvec 20365  df-tdrg 23312  df-tlm 23313  df-tvc 23314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator