MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 24121
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 24120 . 2 (π‘Š ∈ TopVec β†’ π‘Š ∈ LMod)
2 eqid 2727 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
32tvctdrg 24115 . . 3 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ TopDRing)
4 tdrgdrng 24096 . . 3 ((Scalarβ€˜π‘Š) ∈ TopDRing β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
53, 4syl 17 . 2 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
62islvec 20994 . 2 (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
71, 5, 6sylanbrc 581 1 (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  β€˜cfv 6551  Scalarcsca 17241  DivRingcdr 20629  LModclmod 20748  LVecclvec 20992  TopDRingctdrg 24079  TopVecctvc 24081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-iota 6503  df-fv 6559  df-ov 7427  df-lvec 20993  df-tdrg 24083  df-tlm 24084  df-tvc 24085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator