| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tvclvec | Structured version Visualization version GIF version | ||
| Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tvclvec | ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tvclmod 24141 | . 2 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | 2 | tvctdrg 24136 | . . 3 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing) |
| 4 | tdrgdrng 24117 | . . 3 ⊢ ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing) |
| 6 | 2 | islvec 21067 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
| 7 | 1, 5, 6 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6536 Scalarcsca 17279 DivRingcdr 20694 LModclmod 20822 LVecclvec 21065 TopDRingctdrg 24100 TopVecctvc 24102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-lvec 21066 df-tdrg 24104 df-tlm 24105 df-tvc 24106 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |