MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 24054
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 24053 . 2 (π‘Š ∈ TopVec β†’ π‘Š ∈ LMod)
2 eqid 2726 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
32tvctdrg 24048 . . 3 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ TopDRing)
4 tdrgdrng 24029 . . 3 ((Scalarβ€˜π‘Š) ∈ TopDRing β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
53, 4syl 17 . 2 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
62islvec 20950 . 2 (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
71, 5, 6sylanbrc 582 1 (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  β€˜cfv 6536  Scalarcsca 17207  DivRingcdr 20585  LModclmod 20704  LVecclvec 20948  TopDRingctdrg 24012  TopVecctvc 24014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-ov 7407  df-lvec 20949  df-tdrg 24016  df-tlm 24017  df-tvc 24018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator