Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tvclvec | Structured version Visualization version GIF version |
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tvclvec | ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tvclmod 23257 | . 2 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | |
2 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 2 | tvctdrg 23252 | . . 3 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing) |
4 | tdrgdrng 23233 | . . 3 ⊢ ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing) |
6 | 2 | islvec 20281 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
7 | 1, 5, 6 | sylanbrc 582 | 1 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 Scalarcsca 16891 DivRingcdr 19906 LModclmod 20038 LVecclvec 20279 TopDRingctdrg 23216 TopVecctvc 23218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lvec 20280 df-tdrg 23220 df-tlm 23221 df-tvc 23222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |