MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 24228
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (𝑊 ∈ TopVec → 𝑊 ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 24227 . 2 (𝑊 ∈ TopVec → 𝑊 ∈ LMod)
2 eqid 2740 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
32tvctdrg 24222 . . 3 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing)
4 tdrgdrng 24203 . . 3 ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing)
53, 4syl 17 . 2 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing)
62islvec 21126 . 2 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
71, 5, 6sylanbrc 582 1 (𝑊 ∈ TopVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6573  Scalarcsca 17314  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124  TopDRingctdrg 24186  TopVecctvc 24188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-lvec 21125  df-tdrg 24190  df-tlm 24191  df-tvc 24192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator