Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tvclvec | Structured version Visualization version GIF version |
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tvclvec | ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tvclmod 23455 | . 2 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | |
2 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 2 | tvctdrg 23450 | . . 3 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing) |
4 | tdrgdrng 23431 | . . 3 ⊢ ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing) |
6 | 2 | islvec 20472 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
7 | 1, 5, 6 | sylanbrc 583 | 1 ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6479 Scalarcsca 17062 DivRingcdr 20093 LModclmod 20229 LVecclvec 20470 TopDRingctdrg 23414 TopVecctvc 23416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 df-lvec 20471 df-tdrg 23418 df-tlm 23419 df-tvc 23420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |