MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 24142
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (𝑊 ∈ TopVec → 𝑊 ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 24141 . 2 (𝑊 ∈ TopVec → 𝑊 ∈ LMod)
2 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
32tvctdrg 24136 . . 3 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ TopDRing)
4 tdrgdrng 24117 . . 3 ((Scalar‘𝑊) ∈ TopDRing → (Scalar‘𝑊) ∈ DivRing)
53, 4syl 17 . 2 (𝑊 ∈ TopVec → (Scalar‘𝑊) ∈ DivRing)
62islvec 21067 . 2 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
71, 5, 6sylanbrc 583 1 (𝑊 ∈ TopVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6536  Scalarcsca 17279  DivRingcdr 20694  LModclmod 20822  LVecclvec 21065  TopDRingctdrg 24100  TopVecctvc 24102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-lvec 21066  df-tdrg 24104  df-tlm 24105  df-tvc 24106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator