MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclvec Structured version   Visualization version   GIF version

Theorem tvclvec 23694
Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclvec (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)

Proof of Theorem tvclvec
StepHypRef Expression
1 tvclmod 23693 . 2 (π‘Š ∈ TopVec β†’ π‘Š ∈ LMod)
2 eqid 2732 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
32tvctdrg 23688 . . 3 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ TopDRing)
4 tdrgdrng 23669 . . 3 ((Scalarβ€˜π‘Š) ∈ TopDRing β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
53, 4syl 17 . 2 (π‘Š ∈ TopVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
62islvec 20707 . 2 (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
71, 5, 6sylanbrc 583 1 (π‘Š ∈ TopVec β†’ π‘Š ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  β€˜cfv 6540  Scalarcsca 17196  DivRingcdr 20307  LModclmod 20463  LVecclvec 20705  TopDRingctdrg 23652  TopVecctvc 23654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-lvec 20706  df-tdrg 23656  df-tlm 23657  df-tvc 23658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator