| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tvctdrg | Structured version Visualization version GIF version | ||
| Description: The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| tvctdrg | ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | istvc 24115 | . 2 ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 Scalarcsca 17259 TopDRingctdrg 24080 TopModctlm 24081 TopVecctvc 24082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-tvc 24086 |
| This theorem is referenced by: tvclvec 24122 |
| Copyright terms: Public domain | W3C validator |