Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt1vsca | Structured version Visualization version GIF version |
Description: Continuity of scalar multiplication; analogue of cnmpt12f 22817 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘𝑊) |
cnmpt1vsca.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
cnmpt1vsca.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
cnmpt1vsca.w | ⊢ (𝜑 → 𝑊 ∈ TopMod) |
cnmpt1vsca.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
cnmpt1vsca.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
cnmpt1vsca.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1vsca | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1vsca.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1vsca.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ TopMod) | |
3 | tlmtrg.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | tlmscatps 23342 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ TopSp) |
6 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
7 | cnmpt1vsca.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘𝐹) | |
8 | 6, 7 | istps 22083 | . . . . . . 7 ⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
9 | 5, 8 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
10 | cnmpt1vsca.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) | |
11 | cnf2 22400 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) | |
12 | 1, 9, 10, 11 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
13 | 12 | fvmptelrn 6987 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
14 | tlmtps 23339 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | |
15 | 2, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
16 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | cnmpt1vsca.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝑊) | |
18 | 16, 17 | istps 22083 | . . . . . . 7 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
19 | 15, 18 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
20 | cnmpt1vsca.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) | |
21 | cnf2 22400 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) | |
22 | 1, 19, 20, 21 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
23 | 22 | fvmptelrn 6987 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
24 | eqid 2738 | . . . . 5 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
25 | cnmpt1vsca.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
26 | 16, 3, 6, 24, 25 | scafval 20142 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
27 | 13, 23, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
28 | 27 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
29 | 24, 17, 3, 7 | vscacn 23337 | . . . 4 ⊢ (𝑊 ∈ TopMod → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
30 | 2, 29 | syl 17 | . . 3 ⊢ (𝜑 → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
31 | 1, 10, 20, 30 | cnmpt12f 22817 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
32 | 28, 31 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 TopOpenctopn 17132 ·sf cscaf 20124 TopOnctopon 22059 TopSpctps 22081 Cn ccn 22375 ×t ctx 22711 TopModctlm 23309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-topgen 17154 df-scaf 20126 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-tx 22713 df-tmd 23223 df-tgp 23224 df-trg 23311 df-tlm 23313 |
This theorem is referenced by: tlmtgp 23347 |
Copyright terms: Public domain | W3C validator |