| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1vsca | Structured version Visualization version GIF version | ||
| Description: Continuity of scalar multiplication; analogue of cnmpt12f 23560 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cnmpt1vsca.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cnmpt1vsca.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
| cnmpt1vsca.w | ⊢ (𝜑 → 𝑊 ∈ TopMod) |
| cnmpt1vsca.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
| cnmpt1vsca.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
| cnmpt1vsca.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1vsca | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1vsca.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt1vsca.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ TopMod) | |
| 3 | tlmtrg.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | tlmscatps 24085 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ TopSp) |
| 6 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 7 | cnmpt1vsca.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘𝐹) | |
| 8 | 6, 7 | istps 22828 | . . . . . . 7 ⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 9 | 5, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 10 | cnmpt1vsca.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) | |
| 11 | cnf2 23143 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) | |
| 12 | 1, 9, 10, 11 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 13 | 12 | fvmptelcdm 7088 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
| 14 | tlmtps 24082 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | |
| 15 | 2, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | cnmpt1vsca.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 18 | 16, 17 | istps 22828 | . . . . . . 7 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 19 | 15, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 20 | cnmpt1vsca.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) | |
| 21 | cnf2 23143 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) | |
| 22 | 1, 19, 20, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 23 | 22 | fvmptelcdm 7088 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
| 24 | eqid 2730 | . . . . 5 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 25 | cnmpt1vsca.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 26 | 16, 3, 6, 24, 25 | scafval 20794 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 27 | 13, 23, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 28 | 27 | mpteq2dva 5203 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 29 | 24, 17, 3, 7 | vscacn 24080 | . . . 4 ⊢ (𝑊 ∈ TopMod → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 30 | 2, 29 | syl 17 | . . 3 ⊢ (𝜑 → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 31 | 1, 10, 20, 30 | cnmpt12f 23560 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
| 32 | 28, 31 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 TopOpenctopn 17391 ·sf cscaf 20774 TopOnctopon 22804 TopSpctps 22826 Cn ccn 23118 ×t ctx 23454 TopModctlm 24052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-topgen 17413 df-scaf 20776 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-tx 23456 df-tmd 23966 df-tgp 23967 df-trg 24054 df-tlm 24056 |
| This theorem is referenced by: tlmtgp 24090 |
| Copyright terms: Public domain | W3C validator |