MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1vsca Structured version   Visualization version   GIF version

Theorem cnmpt1vsca 23689
Description: Continuity of scalar multiplication; analogue of cnmpt12f 23161 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalarβ€˜π‘Š)
cnmpt1vsca.t Β· = ( ·𝑠 β€˜π‘Š)
cnmpt1vsca.j 𝐽 = (TopOpenβ€˜π‘Š)
cnmpt1vsca.k 𝐾 = (TopOpenβ€˜πΉ)
cnmpt1vsca.w (πœ‘ β†’ π‘Š ∈ TopMod)
cnmpt1vsca.l (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘‹))
cnmpt1vsca.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾))
cnmpt1vsca.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐿 Cn 𝐽))
Assertion
Ref Expression
cnmpt1vsca (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 Β· 𝐡)) ∈ (𝐿 Cn 𝐽))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝐿   πœ‘,π‘₯   π‘₯,π‘Š   π‘₯,𝑋
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   Β· (π‘₯)

Proof of Theorem cnmpt1vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . 6 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜π‘‹))
2 cnmpt1vsca.w . . . . . . . 8 (πœ‘ β†’ π‘Š ∈ TopMod)
3 tlmtrg.f . . . . . . . . 9 𝐹 = (Scalarβ€˜π‘Š)
43tlmscatps 23686 . . . . . . . 8 (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopSp)
52, 4syl 17 . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ TopSp)
6 eqid 2732 . . . . . . . 8 (Baseβ€˜πΉ) = (Baseβ€˜πΉ)
7 cnmpt1vsca.k . . . . . . . 8 𝐾 = (TopOpenβ€˜πΉ)
86, 7istps 22427 . . . . . . 7 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOnβ€˜(Baseβ€˜πΉ)))
95, 8sylib 217 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜(Baseβ€˜πΉ)))
10 cnmpt1vsca.a . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾))
11 cnf2 22744 . . . . . 6 ((𝐿 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜(Baseβ€˜πΉ)) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆ(Baseβ€˜πΉ))
121, 9, 10, 11syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆ(Baseβ€˜πΉ))
1312fvmptelcdm 7109 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐴 ∈ (Baseβ€˜πΉ))
14 tlmtps 23683 . . . . . . . 8 (π‘Š ∈ TopMod β†’ π‘Š ∈ TopSp)
152, 14syl 17 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ TopSp)
16 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
17 cnmpt1vsca.j . . . . . . . 8 𝐽 = (TopOpenβ€˜π‘Š)
1816, 17istps 22427 . . . . . . 7 (π‘Š ∈ TopSp ↔ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜π‘Š)))
1915, 18sylib 217 . . . . . 6 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜π‘Š)))
20 cnmpt1vsca.b . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐿 Cn 𝐽))
21 cnf2 22744 . . . . . 6 ((𝐿 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐿 Cn 𝐽)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆ(Baseβ€˜π‘Š))
221, 19, 20, 21syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆ(Baseβ€˜π‘Š))
2322fvmptelcdm 7109 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐡 ∈ (Baseβ€˜π‘Š))
24 eqid 2732 . . . . 5 ( Β·sf β€˜π‘Š) = ( Β·sf β€˜π‘Š)
25 cnmpt1vsca.t . . . . 5 Β· = ( ·𝑠 β€˜π‘Š)
2616, 3, 6, 24, 25scafval 20483 . . . 4 ((𝐴 ∈ (Baseβ€˜πΉ) ∧ 𝐡 ∈ (Baseβ€˜π‘Š)) β†’ (𝐴( Β·sf β€˜π‘Š)𝐡) = (𝐴 Β· 𝐡))
2713, 23, 26syl2anc 584 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝐴( Β·sf β€˜π‘Š)𝐡) = (𝐴 Β· 𝐡))
2827mpteq2dva 5247 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴( Β·sf β€˜π‘Š)𝐡)) = (π‘₯ ∈ 𝑋 ↦ (𝐴 Β· 𝐡)))
2924, 17, 3, 7vscacn 23681 . . . 4 (π‘Š ∈ TopMod β†’ ( Β·sf β€˜π‘Š) ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))
302, 29syl 17 . . 3 (πœ‘ β†’ ( Β·sf β€˜π‘Š) ∈ ((𝐾 Γ—t 𝐽) Cn 𝐽))
311, 10, 20, 30cnmpt12f 23161 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴( Β·sf β€˜π‘Š)𝐡)) ∈ (𝐿 Cn 𝐽))
3228, 31eqeltrrd 2834 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 Β· 𝐡)) ∈ (𝐿 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  TopOpenctopn 17363   Β·sf cscaf 20464  TopOnctopon 22403  TopSpctps 22425   Cn ccn 22719   Γ—t ctx 23055  TopModctlm 23653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-topgen 17385  df-scaf 20466  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cn 22722  df-tx 23057  df-tmd 23567  df-tgp 23568  df-trg 23655  df-tlm 23657
This theorem is referenced by:  tlmtgp  23691
  Copyright terms: Public domain W3C validator