MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1vsca Structured version   Visualization version   GIF version

Theorem cnmpt1vsca 23253
Description: Continuity of scalar multiplication; analogue of cnmpt12f 22725 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt1vsca.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
cnmpt1vsca.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
Assertion
Ref Expression
cnmpt1vsca (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   · (𝑥)

Proof of Theorem cnmpt1vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt1vsca.w . . . . . . . 8 (𝜑𝑊 ∈ TopMod)
3 tlmtrg.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
43tlmscatps 23250 . . . . . . . 8 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
52, 4syl 17 . . . . . . 7 (𝜑𝐹 ∈ TopSp)
6 eqid 2738 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
7 cnmpt1vsca.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
86, 7istps 21991 . . . . . . 7 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
95, 8sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
10 cnmpt1vsca.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
11 cnf2 22308 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
121, 9, 10, 11syl3anc 1369 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
1312fvmptelrn 6969 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐹))
14 tlmtps 23247 . . . . . . . 8 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
152, 14syl 17 . . . . . . 7 (𝜑𝑊 ∈ TopSp)
16 eqid 2738 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
17 cnmpt1vsca.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1816, 17istps 21991 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
1915, 18sylib 217 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
20 cnmpt1vsca.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
21 cnf2 22308 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
221, 19, 20, 21syl3anc 1369 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
2322fvmptelrn 6969 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝑊))
24 eqid 2738 . . . . 5 ( ·sf𝑊) = ( ·sf𝑊)
25 cnmpt1vsca.t . . . . 5 · = ( ·𝑠𝑊)
2616, 3, 6, 24, 25scafval 20057 . . . 4 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2713, 23, 26syl2anc 583 . . 3 ((𝜑𝑥𝑋) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2827mpteq2dva 5170 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋 ↦ (𝐴 · 𝐵)))
2924, 17, 3, 7vscacn 23245 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
302, 29syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
311, 10, 20, 30cnmpt12f 22725 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ (𝐿 Cn 𝐽))
3228, 31eqeltrrd 2840 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  TopOpenctopn 17049   ·sf cscaf 20039  TopOnctopon 21967  TopSpctps 21989   Cn ccn 22283   ×t ctx 22619  TopModctlm 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-scaf 20041  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-tx 22621  df-tmd 23131  df-tgp 23132  df-trg 23219  df-tlm 23221
This theorem is referenced by:  tlmtgp  23255
  Copyright terms: Public domain W3C validator