MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1vsca Structured version   Visualization version   GIF version

Theorem cnmpt1vsca 24112
Description: Continuity of scalar multiplication; analogue of cnmpt12f 23584 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt1vsca.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
cnmpt1vsca.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
Assertion
Ref Expression
cnmpt1vsca (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   · (𝑥)

Proof of Theorem cnmpt1vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt1vsca.w . . . . . . . 8 (𝜑𝑊 ∈ TopMod)
3 tlmtrg.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
43tlmscatps 24109 . . . . . . . 8 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
52, 4syl 17 . . . . . . 7 (𝜑𝐹 ∈ TopSp)
6 eqid 2733 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
7 cnmpt1vsca.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
86, 7istps 22852 . . . . . . 7 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
95, 8sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
10 cnmpt1vsca.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
11 cnf2 23167 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
121, 9, 10, 11syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
1312fvmptelcdm 7054 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐹))
14 tlmtps 24106 . . . . . . . 8 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
152, 14syl 17 . . . . . . 7 (𝜑𝑊 ∈ TopSp)
16 eqid 2733 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
17 cnmpt1vsca.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1816, 17istps 22852 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
1915, 18sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
20 cnmpt1vsca.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
21 cnf2 23167 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
221, 19, 20, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
2322fvmptelcdm 7054 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝑊))
24 eqid 2733 . . . . 5 ( ·sf𝑊) = ( ·sf𝑊)
25 cnmpt1vsca.t . . . . 5 · = ( ·𝑠𝑊)
2616, 3, 6, 24, 25scafval 20818 . . . 4 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2713, 23, 26syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2827mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋 ↦ (𝐴 · 𝐵)))
2924, 17, 3, 7vscacn 24104 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
302, 29syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
311, 10, 20, 30cnmpt12f 23584 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ (𝐿 Cn 𝐽))
3228, 31eqeltrrd 2834 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5176  wf 6484  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  TopOpenctopn 17329   ·sf cscaf 20798  TopOnctopon 22828  TopSpctps 22850   Cn ccn 23142   ×t ctx 23478  TopModctlm 24076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-map 8760  df-topgen 17351  df-scaf 20800  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cn 23145  df-tx 23480  df-tmd 23990  df-tgp 23991  df-trg 24078  df-tlm 24080
This theorem is referenced by:  tlmtgp  24114
  Copyright terms: Public domain W3C validator