| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1vsca | Structured version Visualization version GIF version | ||
| Description: Continuity of scalar multiplication; analogue of cnmpt12f 23584 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cnmpt1vsca.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cnmpt1vsca.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
| cnmpt1vsca.w | ⊢ (𝜑 → 𝑊 ∈ TopMod) |
| cnmpt1vsca.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
| cnmpt1vsca.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
| cnmpt1vsca.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1vsca | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1vsca.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt1vsca.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ TopMod) | |
| 3 | tlmtrg.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | tlmscatps 24109 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ TopSp) |
| 6 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 7 | cnmpt1vsca.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘𝐹) | |
| 8 | 6, 7 | istps 22852 | . . . . . . 7 ⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 9 | 5, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 10 | cnmpt1vsca.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) | |
| 11 | cnf2 23167 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) | |
| 12 | 1, 9, 10, 11 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 13 | 12 | fvmptelcdm 7054 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
| 14 | tlmtps 24106 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | |
| 15 | 2, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 16 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | cnmpt1vsca.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 18 | 16, 17 | istps 22852 | . . . . . . 7 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 19 | 15, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 20 | cnmpt1vsca.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) | |
| 21 | cnf2 23167 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) | |
| 22 | 1, 19, 20, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 23 | 22 | fvmptelcdm 7054 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
| 24 | eqid 2733 | . . . . 5 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 25 | cnmpt1vsca.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 26 | 16, 3, 6, 24, 25 | scafval 20818 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 27 | 13, 23, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 28 | 27 | mpteq2dva 5188 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 29 | 24, 17, 3, 7 | vscacn 24104 | . . . 4 ⊢ (𝑊 ∈ TopMod → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 30 | 2, 29 | syl 17 | . . 3 ⊢ (𝜑 → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 31 | 1, 10, 20, 30 | cnmpt12f 23584 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
| 32 | 28, 31 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 Scalarcsca 17168 ·𝑠 cvsca 17169 TopOpenctopn 17329 ·sf cscaf 20798 TopOnctopon 22828 TopSpctps 22850 Cn ccn 23142 ×t ctx 23478 TopModctlm 24076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-topgen 17351 df-scaf 20800 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-tx 23480 df-tmd 23990 df-tgp 23991 df-trg 24078 df-tlm 24080 |
| This theorem is referenced by: tlmtgp 24114 |
| Copyright terms: Public domain | W3C validator |