![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1vsca | Structured version Visualization version GIF version |
Description: Continuity of scalar multiplication; analogue of cnmpt12f 23695 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘𝑊) |
cnmpt1vsca.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
cnmpt1vsca.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
cnmpt1vsca.w | ⊢ (𝜑 → 𝑊 ∈ TopMod) |
cnmpt1vsca.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
cnmpt1vsca.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
cnmpt1vsca.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1vsca | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1vsca.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1vsca.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ TopMod) | |
3 | tlmtrg.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | tlmscatps 24220 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ TopSp) |
6 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
7 | cnmpt1vsca.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘𝐹) | |
8 | 6, 7 | istps 22961 | . . . . . . 7 ⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
9 | 5, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
10 | cnmpt1vsca.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) | |
11 | cnf2 23278 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) | |
12 | 1, 9, 10, 11 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
13 | 12 | fvmptelcdm 7147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
14 | tlmtps 24217 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | |
15 | 2, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
16 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | cnmpt1vsca.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝑊) | |
18 | 16, 17 | istps 22961 | . . . . . . 7 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
19 | 15, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
20 | cnmpt1vsca.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) | |
21 | cnf2 23278 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) | |
22 | 1, 19, 20, 21 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
23 | 22 | fvmptelcdm 7147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
24 | eqid 2740 | . . . . 5 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
25 | cnmpt1vsca.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
26 | 16, 3, 6, 24, 25 | scafval 20901 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
27 | 13, 23, 26 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
28 | 27 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
29 | 24, 17, 3, 7 | vscacn 24215 | . . . 4 ⊢ (𝑊 ∈ TopMod → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
30 | 2, 29 | syl 17 | . . 3 ⊢ (𝜑 → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
31 | 1, 10, 20, 30 | cnmpt12f 23695 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
32 | 28, 31 | eqeltrrd 2845 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 TopOpenctopn 17481 ·sf cscaf 20881 TopOnctopon 22937 TopSpctps 22959 Cn ccn 23253 ×t ctx 23589 TopModctlm 24187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-topgen 17503 df-scaf 20883 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-tx 23591 df-tmd 24101 df-tgp 24102 df-trg 24189 df-tlm 24191 |
This theorem is referenced by: tlmtgp 24225 |
Copyright terms: Public domain | W3C validator |