MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1vsca Structured version   Visualization version   GIF version

Theorem cnmpt1vsca 23063
Description: Continuity of scalar multiplication; analogue of cnmpt12f 22535 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt1vsca.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
cnmpt1vsca.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
Assertion
Ref Expression
cnmpt1vsca (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝜑,𝑥   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   · (𝑥)

Proof of Theorem cnmpt1vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt1vsca.w . . . . . . . 8 (𝜑𝑊 ∈ TopMod)
3 tlmtrg.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
43tlmscatps 23060 . . . . . . . 8 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
52, 4syl 17 . . . . . . 7 (𝜑𝐹 ∈ TopSp)
6 eqid 2734 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
7 cnmpt1vsca.k . . . . . . . 8 𝐾 = (TopOpen‘𝐹)
86, 7istps 21803 . . . . . . 7 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
95, 8sylib 221 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
10 cnmpt1vsca.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))
11 cnf2 22118 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
121, 9, 10, 11syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐹))
1312fvmptelrn 6919 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐹))
14 tlmtps 23057 . . . . . . . 8 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
152, 14syl 17 . . . . . . 7 (𝜑𝑊 ∈ TopSp)
16 eqid 2734 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
17 cnmpt1vsca.j . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
1816, 17istps 21803 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
1915, 18sylib 221 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
20 cnmpt1vsca.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))
21 cnf2 22118 . . . . . 6 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
221, 19, 20, 21syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝑊))
2322fvmptelrn 6919 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝑊))
24 eqid 2734 . . . . 5 ( ·sf𝑊) = ( ·sf𝑊)
25 cnmpt1vsca.t . . . . 5 · = ( ·𝑠𝑊)
2616, 3, 6, 24, 25scafval 19890 . . . 4 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2713, 23, 26syl2anc 587 . . 3 ((𝜑𝑥𝑋) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
2827mpteq2dva 5139 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋 ↦ (𝐴 · 𝐵)))
2924, 17, 3, 7vscacn 23055 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
302, 29syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
311, 10, 20, 30cnmpt12f 22535 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ (𝐿 Cn 𝐽))
3228, 31eqeltrrd 2835 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cmpt 5124  wf 6365  cfv 6369  (class class class)co 7202  Basecbs 16684  Scalarcsca 16770   ·𝑠 cvsca 16771  TopOpenctopn 16898   ·sf cscaf 19872  TopOnctopon 21779  TopSpctps 21801   Cn ccn 22093   ×t ctx 22429  TopModctlm 23027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-map 8499  df-topgen 16920  df-scaf 19874  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cn 22096  df-tx 22431  df-tmd 22941  df-tgp 22942  df-trg 23029  df-tlm 23031
This theorem is referenced by:  tlmtgp  23065
  Copyright terms: Public domain W3C validator