| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1vsca | Structured version Visualization version GIF version | ||
| Description: Continuity of scalar multiplication; analogue of cnmpt12f 23609 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cnmpt1vsca.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
| cnmpt1vsca.k | ⊢ 𝐾 = (TopOpen‘𝐹) |
| cnmpt1vsca.w | ⊢ (𝜑 → 𝑊 ∈ TopMod) |
| cnmpt1vsca.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) |
| cnmpt1vsca.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) |
| cnmpt1vsca.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1vsca | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1vsca.l | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt1vsca.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ TopMod) | |
| 3 | tlmtrg.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | tlmscatps 24134 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ TopSp) |
| 6 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 7 | cnmpt1vsca.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘𝐹) | |
| 8 | 6, 7 | istps 22877 | . . . . . . 7 ⊢ (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 9 | 5, 8 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐹))) |
| 10 | cnmpt1vsca.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) | |
| 11 | cnf2 23192 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) | |
| 12 | 1, 9, 10, 11 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐹)) |
| 13 | 12 | fvmptelcdm 7108 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐹)) |
| 14 | tlmtps 24131 | . . . . . . . 8 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | |
| 15 | 2, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
| 16 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | cnmpt1vsca.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 18 | 16, 17 | istps 22877 | . . . . . . 7 ⊢ (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 19 | 15, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝑊))) |
| 20 | cnmpt1vsca.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) | |
| 21 | cnf2 23192 | . . . . . 6 ⊢ ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) | |
| 22 | 1, 19, 20, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝑊)) |
| 23 | 22 | fvmptelcdm 7108 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝑊)) |
| 24 | eqid 2736 | . . . . 5 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 25 | cnmpt1vsca.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 26 | 16, 3, 6, 24, 25 | scafval 20843 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 27 | 13, 23, 26 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴( ·sf ‘𝑊)𝐵) = (𝐴 · 𝐵)) |
| 28 | 27 | mpteq2dva 5219 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 29 | 24, 17, 3, 7 | vscacn 24129 | . . . 4 ⊢ (𝑊 ∈ TopMod → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 30 | 2, 29 | syl 17 | . . 3 ⊢ (𝜑 → ( ·sf ‘𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
| 31 | 1, 10, 20, 30 | cnmpt12f 23609 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴( ·sf ‘𝑊)𝐵)) ∈ (𝐿 Cn 𝐽)) |
| 32 | 28, 31 | eqeltrrd 2836 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Scalarcsca 17279 ·𝑠 cvsca 17280 TopOpenctopn 17440 ·sf cscaf 20823 TopOnctopon 22853 TopSpctps 22875 Cn ccn 23167 ×t ctx 23503 TopModctlm 24101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-topgen 17462 df-scaf 20825 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cn 23170 df-tx 23505 df-tmd 24015 df-tgp 24016 df-trg 24103 df-tlm 24105 |
| This theorem is referenced by: tlmtgp 24139 |
| Copyright terms: Public domain | W3C validator |