MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-2OLD Structured version   Visualization version   GIF version

Theorem tz6.12-2OLD 6810
Description: Obsolete version of tz6.12-2 6809 as of 25-Jan-2026. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tz6.12-2OLD (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz6.12-2OLD
StepHypRef Expression
1 df-fv 6489 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotanul 6461 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∅)
31, 2eqtrid 2778 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  ∃!weu 2563  c0 4283   class class class wbr 5091  cio 6435  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3905  df-ss 3919  df-nul 4284  df-sn 4577  df-uni 4860  df-iota 6437  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator