| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveu | Structured version Visualization version GIF version | ||
| Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.) |
| Ref | Expression |
|---|---|
| fveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6539 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotauni 6506 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
| 3 | 1, 2 | eqtrid 2782 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃!weu 2567 {cab 2713 ∪ cuni 4883 class class class wbr 5119 ℩cio 6482 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: afveu 47182 |
| Copyright terms: Public domain | W3C validator |