Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyc01 Structured version   Visualization version   GIF version

Theorem tocyc01 30817
 Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Hypothesis
Ref Expression
tocyc01.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocyc01 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))

Proof of Theorem tocyc01
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tocyc01.1 . . . . 5 𝐶 = (toCyc‘𝐷)
2 simpl 486 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝐷𝑉)
3 simpr 488 . . . . . . . . 9 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})))
43elin1d 4125 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ dom 𝐶)
5 eqid 2798 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
6 eqid 2798 . . . . . . . . . 10 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
71, 5, 6tocycf 30816 . . . . . . . . 9 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
8 fdm 6495 . . . . . . . . 9 (𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
92, 7, 83syl 18 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
104, 9eleqtrd 2892 . . . . . . 7 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5736 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2799 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6583 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3628 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 221 . . . . . 6 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simpld 498 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ Word 𝐷)
1816simprd 499 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊:dom 𝑊1-1𝐷)
191, 2, 17, 18tocycfv 30808 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
2019adantr 484 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
21 hasheq0 13722 . . . . . 6 (𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
223, 21syl 17 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2322biimpa 480 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
24 rneq 5770 . . . . . . . . . 10 (𝑊 = ∅ → ran 𝑊 = ran ∅)
25 rn0 5760 . . . . . . . . . 10 ran ∅ = ∅
2624, 25eqtrdi 2849 . . . . . . . . 9 (𝑊 = ∅ → ran 𝑊 = ∅)
2726difeq2d 4050 . . . . . . . 8 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = (𝐷 ∖ ∅))
28 dif0 4286 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
2927, 28eqtrdi 2849 . . . . . . 7 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = 𝐷)
3029reseq2d 5818 . . . . . 6 (𝑊 = ∅ → ( I ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ 𝐷))
31 cnveq 5708 . . . . . . . . 9 (𝑊 = ∅ → 𝑊 = ∅)
32 cnv0 5966 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2849 . . . . . . . 8 (𝑊 = ∅ → 𝑊 = ∅)
3433coeq2d 5697 . . . . . . 7 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ ∅))
35 co02 6080 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ∅) = ∅
3634, 35eqtrdi 2849 . . . . . 6 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ∅)
3730, 36uneq12d 4091 . . . . 5 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ 𝐷) ∪ ∅))
38 un0 4298 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
3937, 38eqtrdi 2849 . . . 4 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4023, 39syl 17 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4120, 40eqtrd 2833 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = ( I ↾ 𝐷))
4219adantr 484 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
4317adantr 484 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 𝑊 ∈ Word 𝐷)
44 1zzd 12003 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 1 ∈ ℤ)
45 simpr 488 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
46 1cshid 30666 . . . . . . 7 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4743, 44, 45, 46syl3anc 1368 . . . . . 6 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4847coeq1d 5696 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = (𝑊𝑊))
49 wrdf 13864 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
50 ffun 6490 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → Fun 𝑊)
51 funcocnv2 6614 . . . . . 6 (Fun 𝑊 → (𝑊𝑊) = ( I ↾ ran 𝑊))
5243, 49, 50, 514syl 19 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊𝑊) = ( I ↾ ran 𝑊))
5348, 52eqtrd 2833 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = ( I ↾ ran 𝑊))
5453uneq2d 4090 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)))
55 resundi 5832 . . . 4 ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊))
56 frn 6493 . . . . . . 7 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
57 undifr 30303 . . . . . . 7 (ran 𝑊𝐷 ↔ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5856, 57sylib 221 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5943, 49, 583syl 18 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
6059reseq2d 5818 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = ( I ↾ 𝐷))
6155, 60syl5eqr 2847 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)) = ( I ↾ 𝐷))
6242, 54, 613eqtrd 2837 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = ( I ↾ 𝐷))
633elin2d 4126 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (♯ “ {0, 1}))
64 hashf 13696 . . . . . 6 ♯:V⟶(ℕ0 ∪ {+∞})
65 ffn 6487 . . . . . 6 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
66 elpreima 6805 . . . . . 6 (♯ Fn V → (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1})))
6764, 65, 66mp2b 10 . . . . 5 (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6863, 67sylib 221 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6968simprd 499 . . 3 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (♯‘𝑊) ∈ {0, 1})
70 elpri 4547 . . 3 ((♯‘𝑊) ∈ {0, 1} → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7169, 70syl 17 . 2 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7241, 62, 71mpjaodan 956 1 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  {csn 4525  {cpr 4527   I cid 5424  ◡ccnv 5518  dom cdm 5519  ran crn 5520   ↾ cres 5521   “ cima 5522   ∘ ccom 5523  Fun wfun 6318   Fn wfn 6319  ⟶wf 6320  –1-1→wf1 6321  ‘cfv 6324  (class class class)co 7135  0cc0 10528  1c1 10529  +∞cpnf 10663  ℕ0cn0 11887  ℤcz 11971  ..^cfzo 13030  ♯chash 13688  Word cword 13859   cyclShift ccsh 14143  Basecbs 16477  SymGrpcsymg 18490  toCycctocyc 30805 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-hash 13689  df-word 13860  df-concat 13916  df-substr 13996  df-pfx 14026  df-csh 14144  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-efmnd 18028  df-symg 18491  df-tocyc 30806 This theorem is referenced by:  tocyccntz  30843
 Copyright terms: Public domain W3C validator