Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyc01 Structured version   Visualization version   GIF version

Theorem tocyc01 33111
Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Hypothesis
Ref Expression
tocyc01.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocyc01 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))

Proof of Theorem tocyc01
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tocyc01.1 . . . . 5 𝐶 = (toCyc‘𝐷)
2 simpl 482 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝐷𝑉)
3 simpr 484 . . . . . . . . 9 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})))
43elin1d 4227 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ dom 𝐶)
5 eqid 2740 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
6 eqid 2740 . . . . . . . . . 10 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
71, 5, 6tocycf 33110 . . . . . . . . 9 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
8 fdm 6756 . . . . . . . . 9 (𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
92, 7, 83syl 18 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
104, 9eleqtrd 2846 . . . . . . 7 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5928 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2741 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6854 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3708 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 218 . . . . . 6 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simpld 494 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ Word 𝐷)
1816simprd 495 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊:dom 𝑊1-1𝐷)
191, 2, 17, 18tocycfv 33102 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
2019adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
21 hasheq0 14412 . . . . . 6 (𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
223, 21syl 17 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2322biimpa 476 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
24 rneq 5961 . . . . . . . . . 10 (𝑊 = ∅ → ran 𝑊 = ran ∅)
25 rn0 5950 . . . . . . . . . 10 ran ∅ = ∅
2624, 25eqtrdi 2796 . . . . . . . . 9 (𝑊 = ∅ → ran 𝑊 = ∅)
2726difeq2d 4149 . . . . . . . 8 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = (𝐷 ∖ ∅))
28 dif0 4400 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
2927, 28eqtrdi 2796 . . . . . . 7 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = 𝐷)
3029reseq2d 6009 . . . . . 6 (𝑊 = ∅ → ( I ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ 𝐷))
31 cnveq 5898 . . . . . . . . 9 (𝑊 = ∅ → 𝑊 = ∅)
32 cnv0 6172 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2796 . . . . . . . 8 (𝑊 = ∅ → 𝑊 = ∅)
3433coeq2d 5887 . . . . . . 7 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ ∅))
35 co02 6291 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ∅) = ∅
3634, 35eqtrdi 2796 . . . . . 6 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ∅)
3730, 36uneq12d 4192 . . . . 5 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ 𝐷) ∪ ∅))
38 un0 4417 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
3937, 38eqtrdi 2796 . . . 4 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4023, 39syl 17 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4120, 40eqtrd 2780 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = ( I ↾ 𝐷))
4219adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
4317adantr 480 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 𝑊 ∈ Word 𝐷)
44 1zzd 12674 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 1 ∈ ℤ)
45 simpr 484 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
46 1cshid 32926 . . . . . . 7 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4743, 44, 45, 46syl3anc 1371 . . . . . 6 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4847coeq1d 5886 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = (𝑊𝑊))
49 wrdf 14567 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
50 ffun 6750 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → Fun 𝑊)
51 funcocnv2 6887 . . . . . 6 (Fun 𝑊 → (𝑊𝑊) = ( I ↾ ran 𝑊))
5243, 49, 50, 514syl 19 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊𝑊) = ( I ↾ ran 𝑊))
5348, 52eqtrd 2780 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = ( I ↾ ran 𝑊))
5453uneq2d 4191 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)))
55 resundi 6023 . . . 4 ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊))
56 frn 6754 . . . . . . 7 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
57 undifr 4506 . . . . . . 7 (ran 𝑊𝐷 ↔ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5856, 57sylib 218 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5943, 49, 583syl 18 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
6059reseq2d 6009 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = ( I ↾ 𝐷))
6155, 60eqtr3id 2794 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)) = ( I ↾ 𝐷))
6242, 54, 613eqtrd 2784 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = ( I ↾ 𝐷))
633elin2d 4228 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (♯ “ {0, 1}))
64 hashf 14387 . . . . . 6 ♯:V⟶(ℕ0 ∪ {+∞})
65 ffn 6747 . . . . . 6 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
66 elpreima 7091 . . . . . 6 (♯ Fn V → (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1})))
6764, 65, 66mp2b 10 . . . . 5 (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6863, 67sylib 218 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6968simprd 495 . . 3 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (♯‘𝑊) ∈ {0, 1})
70 elpri 4671 . . 3 ((♯‘𝑊) ∈ {0, 1} → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7169, 70syl 17 . 2 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7241, 62, 71mpjaodan 959 1 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  +∞cpnf 11321  0cn0 12553  cz 12639  ..^cfzo 13711  chash 14379  Word cword 14562   cyclShift ccsh 14836  Basecbs 17258  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-tocyc 33100
This theorem is referenced by:  tocyccntz  33137
  Copyright terms: Public domain W3C validator