Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyc01 Structured version   Visualization version   GIF version

Theorem tocyc01 33120
Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Hypothesis
Ref Expression
tocyc01.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocyc01 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))

Proof of Theorem tocyc01
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tocyc01.1 . . . . 5 𝐶 = (toCyc‘𝐷)
2 simpl 482 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝐷𝑉)
3 simpr 484 . . . . . . . . 9 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})))
43elin1d 4213 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ dom 𝐶)
5 eqid 2734 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
6 eqid 2734 . . . . . . . . . 10 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
71, 5, 6tocycf 33119 . . . . . . . . 9 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
8 fdm 6745 . . . . . . . . 9 (𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
92, 7, 83syl 18 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
104, 9eleqtrd 2840 . . . . . . 7 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5916 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2735 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6840 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3694 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 218 . . . . . 6 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simpld 494 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ Word 𝐷)
1816simprd 495 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊:dom 𝑊1-1𝐷)
191, 2, 17, 18tocycfv 33111 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
2019adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
21 hasheq0 14398 . . . . . 6 (𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
223, 21syl 17 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2322biimpa 476 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
24 rneq 5949 . . . . . . . . . 10 (𝑊 = ∅ → ran 𝑊 = ran ∅)
25 rn0 5938 . . . . . . . . . 10 ran ∅ = ∅
2624, 25eqtrdi 2790 . . . . . . . . 9 (𝑊 = ∅ → ran 𝑊 = ∅)
2726difeq2d 4135 . . . . . . . 8 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = (𝐷 ∖ ∅))
28 dif0 4383 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
2927, 28eqtrdi 2790 . . . . . . 7 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = 𝐷)
3029reseq2d 5999 . . . . . 6 (𝑊 = ∅ → ( I ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ 𝐷))
31 cnveq 5886 . . . . . . . . 9 (𝑊 = ∅ → 𝑊 = ∅)
32 cnv0 6162 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2790 . . . . . . . 8 (𝑊 = ∅ → 𝑊 = ∅)
3433coeq2d 5875 . . . . . . 7 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ ∅))
35 co02 6281 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ∅) = ∅
3634, 35eqtrdi 2790 . . . . . 6 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ∅)
3730, 36uneq12d 4178 . . . . 5 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ 𝐷) ∪ ∅))
38 un0 4399 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
3937, 38eqtrdi 2790 . . . 4 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4023, 39syl 17 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4120, 40eqtrd 2774 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = ( I ↾ 𝐷))
4219adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
4317adantr 480 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 𝑊 ∈ Word 𝐷)
44 1zzd 12645 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 1 ∈ ℤ)
45 simpr 484 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
46 1cshid 32928 . . . . . . 7 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4743, 44, 45, 46syl3anc 1370 . . . . . 6 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4847coeq1d 5874 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = (𝑊𝑊))
49 wrdf 14553 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
50 ffun 6739 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → Fun 𝑊)
51 funcocnv2 6873 . . . . . 6 (Fun 𝑊 → (𝑊𝑊) = ( I ↾ ran 𝑊))
5243, 49, 50, 514syl 19 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊𝑊) = ( I ↾ ran 𝑊))
5348, 52eqtrd 2774 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = ( I ↾ ran 𝑊))
5453uneq2d 4177 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)))
55 resundi 6013 . . . 4 ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊))
56 frn 6743 . . . . . . 7 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
57 undifr 4488 . . . . . . 7 (ran 𝑊𝐷 ↔ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5856, 57sylib 218 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5943, 49, 583syl 18 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
6059reseq2d 5999 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = ( I ↾ 𝐷))
6155, 60eqtr3id 2788 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)) = ( I ↾ 𝐷))
6242, 54, 613eqtrd 2778 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = ( I ↾ 𝐷))
633elin2d 4214 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (♯ “ {0, 1}))
64 hashf 14373 . . . . . 6 ♯:V⟶(ℕ0 ∪ {+∞})
65 ffn 6736 . . . . . 6 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
66 elpreima 7077 . . . . . 6 (♯ Fn V → (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1})))
6764, 65, 66mp2b 10 . . . . 5 (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6863, 67sylib 218 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6968simprd 495 . . 3 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (♯‘𝑊) ∈ {0, 1})
70 elpri 4653 . . 3 ((♯‘𝑊) ∈ {0, 1} → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7169, 70syl 17 . 2 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7241, 62, 71mpjaodan 960 1 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630  {cpr 4632   I cid 5581  ccnv 5687  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  ccom 5692  Fun wfun 6556   Fn wfn 6557  wf 6558  1-1wf1 6559  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  +∞cpnf 11289  0cn0 12523  cz 12610  ..^cfzo 13690  chash 14365  Word cword 14548   cyclShift ccsh 14822  Basecbs 17244  SymGrpcsymg 19400  toCycctocyc 33108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-hash 14366  df-word 14549  df-concat 14605  df-substr 14675  df-pfx 14705  df-csh 14823  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-tset 17316  df-efmnd 18894  df-symg 19401  df-tocyc 33109
This theorem is referenced by:  tocyccntz  33146
  Copyright terms: Public domain W3C validator