Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyc01 Structured version   Visualization version   GIF version

Theorem tocyc01 33077
Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Hypothesis
Ref Expression
tocyc01.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocyc01 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))

Proof of Theorem tocyc01
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tocyc01.1 . . . . 5 𝐶 = (toCyc‘𝐷)
2 simpl 482 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝐷𝑉)
3 simpr 484 . . . . . . . . 9 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})))
43elin1d 4184 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ dom 𝐶)
5 eqid 2734 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
6 eqid 2734 . . . . . . . . . 10 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
71, 5, 6tocycf 33076 . . . . . . . . 9 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
8 fdm 6725 . . . . . . . . 9 (𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
92, 7, 83syl 18 . . . . . . . 8 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → dom 𝐶 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
104, 9eleqtrd 2835 . . . . . . 7 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5894 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2735 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6820 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3675 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 218 . . . . . 6 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simpld 494 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ Word 𝐷)
1816simprd 495 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊:dom 𝑊1-1𝐷)
191, 2, 17, 18tocycfv 33068 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
2019adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
21 hasheq0 14384 . . . . . 6 (𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1})) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
223, 21syl 17 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2322biimpa 476 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
24 rneq 5927 . . . . . . . . . 10 (𝑊 = ∅ → ran 𝑊 = ran ∅)
25 rn0 5916 . . . . . . . . . 10 ran ∅ = ∅
2624, 25eqtrdi 2785 . . . . . . . . 9 (𝑊 = ∅ → ran 𝑊 = ∅)
2726difeq2d 4106 . . . . . . . 8 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = (𝐷 ∖ ∅))
28 dif0 4358 . . . . . . . 8 (𝐷 ∖ ∅) = 𝐷
2927, 28eqtrdi 2785 . . . . . . 7 (𝑊 = ∅ → (𝐷 ∖ ran 𝑊) = 𝐷)
3029reseq2d 5977 . . . . . 6 (𝑊 = ∅ → ( I ↾ (𝐷 ∖ ran 𝑊)) = ( I ↾ 𝐷))
31 cnveq 5864 . . . . . . . . 9 (𝑊 = ∅ → 𝑊 = ∅)
32 cnv0 6140 . . . . . . . . 9 ∅ = ∅
3331, 32eqtrdi 2785 . . . . . . . 8 (𝑊 = ∅ → 𝑊 = ∅)
3433coeq2d 5853 . . . . . . 7 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ ∅))
35 co02 6260 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ∅) = ∅
3634, 35eqtrdi 2785 . . . . . 6 (𝑊 = ∅ → ((𝑊 cyclShift 1) ∘ 𝑊) = ∅)
3730, 36uneq12d 4149 . . . . 5 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ 𝐷) ∪ ∅))
38 un0 4374 . . . . 5 (( I ↾ 𝐷) ∪ ∅) = ( I ↾ 𝐷)
3937, 38eqtrdi 2785 . . . 4 (𝑊 = ∅ → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4023, 39syl 17 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = ( I ↾ 𝐷))
4120, 40eqtrd 2769 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 0) → (𝐶𝑊) = ( I ↾ 𝐷))
4219adantr 480 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
4317adantr 480 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 𝑊 ∈ Word 𝐷)
44 1zzd 12631 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → 1 ∈ ℤ)
45 simpr 484 . . . . . . 7 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
46 1cshid 32884 . . . . . . 7 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4743, 44, 45, 46syl3anc 1372 . . . . . 6 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 1) = 𝑊)
4847coeq1d 5852 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = (𝑊𝑊))
49 wrdf 14539 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
50 ffun 6719 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → Fun 𝑊)
51 funcocnv2 6853 . . . . . 6 (Fun 𝑊 → (𝑊𝑊) = ( I ↾ ran 𝑊))
5243, 49, 50, 514syl 19 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝑊𝑊) = ( I ↾ ran 𝑊))
5348, 52eqtrd 2769 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝑊 cyclShift 1) ∘ 𝑊) = ( I ↾ ran 𝑊))
5453uneq2d 4148 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)))
55 resundi 5991 . . . 4 ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊))
56 frn 6723 . . . . . . 7 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
57 undifr 4463 . . . . . . 7 (ran 𝑊𝐷 ↔ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5856, 57sylib 218 . . . . . 6 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
5943, 49, 583syl 18 . . . . 5 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊) = 𝐷)
6059reseq2d 5977 . . . 4 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → ( I ↾ ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)) = ( I ↾ 𝐷))
6155, 60eqtr3id 2783 . . 3 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ( I ↾ ran 𝑊)) = ( I ↾ 𝐷))
6242, 54, 613eqtrd 2773 . 2 (((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) ∧ (♯‘𝑊) = 1) → (𝐶𝑊) = ( I ↾ 𝐷))
633elin2d 4185 . . . . 5 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → 𝑊 ∈ (♯ “ {0, 1}))
64 hashf 14359 . . . . . 6 ♯:V⟶(ℕ0 ∪ {+∞})
65 ffn 6716 . . . . . 6 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
66 elpreima 7058 . . . . . 6 (♯ Fn V → (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1})))
6764, 65, 66mp2b 10 . . . . 5 (𝑊 ∈ (♯ “ {0, 1}) ↔ (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6863, 67sylib 218 . . . 4 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝑊 ∈ V ∧ (♯‘𝑊) ∈ {0, 1}))
6968simprd 495 . . 3 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (♯‘𝑊) ∈ {0, 1})
70 elpri 4629 . . 3 ((♯‘𝑊) ∈ {0, 1} → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7169, 70syl 17 . 2 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → ((♯‘𝑊) = 0 ∨ (♯‘𝑊) = 1))
7241, 62, 71mpjaodan 960 1 ((𝐷𝑉𝑊 ∈ (dom 𝐶 ∩ (♯ “ {0, 1}))) → (𝐶𝑊) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  {cpr 4608   I cid 5557  ccnv 5664  dom cdm 5665  ran crn 5666  cres 5667  cima 5668  ccom 5669  Fun wfun 6535   Fn wfn 6536  wf 6537  1-1wf1 6538  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  +∞cpnf 11274  0cn0 12509  cz 12596  ..^cfzo 13676  chash 14351  Word cword 14534   cyclShift ccsh 14808  Basecbs 17229  SymGrpcsymg 19354  toCycctocyc 33065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14352  df-word 14535  df-concat 14591  df-substr 14661  df-pfx 14691  df-csh 14809  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-tset 17292  df-efmnd 18851  df-symg 19355  df-tocyc 33066
This theorem is referenced by:  tocyccntz  33103
  Copyright terms: Public domain W3C validator