MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofvswap Structured version   Visualization version   GIF version

Theorem f1ofvswap 7281
Description: Swapping two values in a bijection between two classes yields another bijection between those classes. (Contributed by BTernaryTau, 31-Aug-2024.)
Assertion
Ref Expression
f1ofvswap ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)

Proof of Theorem f1ofvswap
StepHypRef Expression
1 f1oi 6838 . . . . . 6 ( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌})
2 f1oprswap 6844 . . . . . 6 ((𝑋𝐴𝑌𝐴) → {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌})
3 disjdifr 4436 . . . . . . 7 ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅
4 f1oun 6819 . . . . . . 7 (((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) ∧ (((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅)) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
53, 3, 4mpanr12 705 . . . . . 6 ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
61, 2, 5sylancr 587 . . . . 5 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
7 prssi 4785 . . . . . . 7 ((𝑋𝐴𝑌𝐴) → {𝑋, 𝑌} ⊆ 𝐴)
8 undifr 4446 . . . . . . 7 ({𝑋, 𝑌} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
97, 8sylib 218 . . . . . 6 ((𝑋𝐴𝑌𝐴) → ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
10 f1oeq23 6791 . . . . . 6 ((((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴 ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
119, 9, 10syl2anc 584 . . . . 5 ((𝑋𝐴𝑌𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
126, 11mpbid 232 . . . 4 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴)
13 f1oco 6823 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
1412, 13sylan2 593 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
15143impb 1114 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
16 f1ofn 6801 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
17 coundi 6220 . . . . . 6 (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}))
18 fcoconst 7106 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
19183adant2 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
20 xpsng 7111 . . . . . . . . . . . 12 ((𝑋𝐴𝑌𝐴) → ({𝑋} × {𝑌}) = {⟨𝑋, 𝑌⟩})
2120coeq2d 5826 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
22213adant1 1130 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
23 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑌) ∈ V
24 xpsng 7111 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝐹𝑌) ∈ V) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2523, 24mpan2 691 . . . . . . . . . . 11 (𝑋𝐴 → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
26253ad2ant2 1134 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2719, 22, 263eqtr3d 2772 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩}) = {⟨𝑋, (𝐹𝑌)⟩})
28 fcoconst 7106 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
29283adant3 1132 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
30 xpsng 7111 . . . . . . . . . . . . 13 ((𝑌𝐴𝑋𝐴) → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
3130coeq2d 5826 . . . . . . . . . . . 12 ((𝑌𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
3231ancoms 458 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
33323adant1 1130 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
34 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
35 xpsng 7111 . . . . . . . . . . . 12 ((𝑌𝐴 ∧ (𝐹𝑋) ∈ V) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3634, 35mpan2 691 . . . . . . . . . . 11 (𝑌𝐴 → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
37363ad2ant3 1135 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3829, 33, 373eqtr3d 2772 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑌, 𝑋⟩}) = {⟨𝑌, (𝐹𝑋)⟩})
3927, 38uneq12d 4132 . . . . . . . 8 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩})) = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩}))
40 df-pr 4592 . . . . . . . . . 10 {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩} = ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})
4140coeq2i 5824 . . . . . . . . 9 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩}))
42 coundi 6220 . . . . . . . . 9 (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
4341, 42eqtri 2752 . . . . . . . 8 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
44 df-pr 4592 . . . . . . . 8 {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩} = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩})
4539, 43, 443eqtr4g 2789 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
4645uneq2d 4131 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
4717, 46eqtrid 2776 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
48 coires1 6237 . . . . . 6 (𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) = (𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌}))
4948uneq1i 4127 . . . . 5 ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
5047, 49eqtrdi 2780 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5116, 50syl3an1 1163 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5251f1oeq1d 6795 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵))
5315, 52mpbid 232 1 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595   I cid 5532   × cxp 5636  cres 5640  ccom 5642   Fn wfn 6506  1-1-ontowf1o 6510  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  dif1en  9124  dif1enOLD  9126  nregmodelf1o  45005
  Copyright terms: Public domain W3C validator