MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofvswap Structured version   Visualization version   GIF version

Theorem f1ofvswap 7300
Description: Swapping two values in a bijection between two classes yields another bijection between those classes. (Contributed by BTernaryTau, 31-Aug-2024.)
Assertion
Ref Expression
f1ofvswap ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)

Proof of Theorem f1ofvswap
StepHypRef Expression
1 f1oi 6865 . . . . . 6 ( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌})
2 f1oprswap 6871 . . . . . 6 ((𝑋𝐴𝑌𝐴) → {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌})
3 disjdifr 4467 . . . . . . 7 ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅
4 f1oun 6846 . . . . . . 7 (((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) ∧ (((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅)) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
53, 3, 4mpanr12 702 . . . . . 6 ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
61, 2, 5sylancr 586 . . . . 5 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
7 prssi 4819 . . . . . . 7 ((𝑋𝐴𝑌𝐴) → {𝑋, 𝑌} ⊆ 𝐴)
8 undifr 4477 . . . . . . 7 ({𝑋, 𝑌} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
97, 8sylib 217 . . . . . 6 ((𝑋𝐴𝑌𝐴) → ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
10 f1oeq23 6818 . . . . . 6 ((((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴 ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
119, 9, 10syl2anc 583 . . . . 5 ((𝑋𝐴𝑌𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
126, 11mpbid 231 . . . 4 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴)
13 f1oco 6850 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
1412, 13sylan2 592 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
15143impb 1112 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
16 f1ofn 6828 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
17 coundi 6240 . . . . . 6 (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}))
18 fcoconst 7128 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
19183adant2 1128 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
20 xpsng 7133 . . . . . . . . . . . 12 ((𝑋𝐴𝑌𝐴) → ({𝑋} × {𝑌}) = {⟨𝑋, 𝑌⟩})
2120coeq2d 5856 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
22213adant1 1127 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
23 fvex 6898 . . . . . . . . . . . 12 (𝐹𝑌) ∈ V
24 xpsng 7133 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝐹𝑌) ∈ V) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2523, 24mpan2 688 . . . . . . . . . . 11 (𝑋𝐴 → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
26253ad2ant2 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2719, 22, 263eqtr3d 2774 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩}) = {⟨𝑋, (𝐹𝑌)⟩})
28 fcoconst 7128 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
29283adant3 1129 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
30 xpsng 7133 . . . . . . . . . . . . 13 ((𝑌𝐴𝑋𝐴) → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
3130coeq2d 5856 . . . . . . . . . . . 12 ((𝑌𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
3231ancoms 458 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
33323adant1 1127 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
34 fvex 6898 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
35 xpsng 7133 . . . . . . . . . . . 12 ((𝑌𝐴 ∧ (𝐹𝑋) ∈ V) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3634, 35mpan2 688 . . . . . . . . . . 11 (𝑌𝐴 → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
37363ad2ant3 1132 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3829, 33, 373eqtr3d 2774 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑌, 𝑋⟩}) = {⟨𝑌, (𝐹𝑋)⟩})
3927, 38uneq12d 4159 . . . . . . . 8 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩})) = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩}))
40 df-pr 4626 . . . . . . . . . 10 {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩} = ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})
4140coeq2i 5854 . . . . . . . . 9 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩}))
42 coundi 6240 . . . . . . . . 9 (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
4341, 42eqtri 2754 . . . . . . . 8 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
44 df-pr 4626 . . . . . . . 8 {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩} = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩})
4539, 43, 443eqtr4g 2791 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
4645uneq2d 4158 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
4717, 46eqtrid 2778 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
48 coires1 6257 . . . . . 6 (𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) = (𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌}))
4948uneq1i 4154 . . . . 5 ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
5047, 49eqtrdi 2782 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5116, 50syl3an1 1160 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5251f1oeq1d 6822 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵))
5315, 52mpbid 231 1 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468  cdif 3940  cun 3941  cin 3942  wss 3943  c0 4317  {csn 4623  {cpr 4625  cop 4629   I cid 5566   × cxp 5667  cres 5671  ccom 5673   Fn wfn 6532  1-1-ontowf1o 6536  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545
This theorem is referenced by:  dif1en  9162  dif1enOLD  9164
  Copyright terms: Public domain W3C validator