Proof of Theorem f1ofvswap
Step | Hyp | Ref
| Expression |
1 | | f1oi 6754 |
. . . . . 6
⊢ ( I
↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) |
2 | | f1oprswap 6760 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) |
3 | | disjdifr 4406 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ |
4 | | f1oun 6735 |
. . . . . . 7
⊢ (((( I
↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) ∧ (((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅)) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})) |
5 | 3, 3, 4 | mpanr12 702 |
. . . . . 6
⊢ ((( I
↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})) |
6 | 1, 2, 5 | sylancr 587 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})) |
7 | | prssi 4754 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → {𝑋, 𝑌} ⊆ 𝐴) |
8 | | undif 4415 |
. . . . . . . 8
⊢ ({𝑋, 𝑌} ⊆ 𝐴 ↔ ({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = 𝐴) |
9 | | uncom 4087 |
. . . . . . . . 9
⊢ ({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) |
10 | 9 | eqeq1i 2743 |
. . . . . . . 8
⊢ (({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) |
11 | 8, 10 | bitri 274 |
. . . . . . 7
⊢ ({𝑋, 𝑌} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) |
12 | 7, 11 | sylib 217 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) |
13 | | f1oeq23 6707 |
. . . . . 6
⊢ ((((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴 ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):𝐴–1-1-onto→𝐴)) |
14 | 12, 12, 13 | syl2anc 584 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):𝐴–1-1-onto→𝐴)) |
15 | 6, 14 | mpbid 231 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):𝐴–1-1-onto→𝐴) |
16 | | f1oco 6739 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}):𝐴–1-1-onto→𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})):𝐴–1-1-onto→𝐵) |
17 | 15, 16 | sylan2 593 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})):𝐴–1-1-onto→𝐵) |
18 | 17 | 3impb 1114 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})):𝐴–1-1-onto→𝐵) |
19 | | f1ofn 6717 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
20 | | coundi 6151 |
. . . . . 6
⊢ (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) |
21 | | fcoconst 7006 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹‘𝑌)})) |
22 | 21 | 3adant2 1130 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹‘𝑌)})) |
23 | | xpsng 7011 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ({𝑋} × {𝑌}) = {〈𝑋, 𝑌〉}) |
24 | 23 | coeq2d 5771 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {〈𝑋, 𝑌〉})) |
25 | 24 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {〈𝑋, 𝑌〉})) |
26 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑌) ∈ V |
27 | | xpsng 7011 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑌) ∈ V) → ({𝑋} × {(𝐹‘𝑌)}) = {〈𝑋, (𝐹‘𝑌)〉}) |
28 | 26, 27 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → ({𝑋} × {(𝐹‘𝑌)}) = {〈𝑋, (𝐹‘𝑌)〉}) |
29 | 28 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ({𝑋} × {(𝐹‘𝑌)}) = {〈𝑋, (𝐹‘𝑌)〉}) |
30 | 22, 25, 29 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ {〈𝑋, 𝑌〉}) = {〈𝑋, (𝐹‘𝑌)〉}) |
31 | | fcoconst 7006 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹‘𝑋)})) |
32 | 31 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹‘𝑋)})) |
33 | | xpsng 7011 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → ({𝑌} × {𝑋}) = {〈𝑌, 𝑋〉}) |
34 | 33 | coeq2d 5771 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {〈𝑌, 𝑋〉})) |
35 | 34 | ancoms 459 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {〈𝑌, 𝑋〉})) |
36 | 35 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {〈𝑌, 𝑋〉})) |
37 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑋) ∈ V |
38 | | xpsng 7011 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ V) → ({𝑌} × {(𝐹‘𝑋)}) = {〈𝑌, (𝐹‘𝑋)〉}) |
39 | 37, 38 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ 𝐴 → ({𝑌} × {(𝐹‘𝑋)}) = {〈𝑌, (𝐹‘𝑋)〉}) |
40 | 39 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ({𝑌} × {(𝐹‘𝑋)}) = {〈𝑌, (𝐹‘𝑋)〉}) |
41 | 32, 36, 40 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ {〈𝑌, 𝑋〉}) = {〈𝑌, (𝐹‘𝑋)〉}) |
42 | 30, 41 | uneq12d 4098 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ {〈𝑋, 𝑌〉}) ∪ (𝐹 ∘ {〈𝑌, 𝑋〉})) = ({〈𝑋, (𝐹‘𝑌)〉} ∪ {〈𝑌, (𝐹‘𝑋)〉})) |
43 | | df-pr 4564 |
. . . . . . . . . 10
⊢
{〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉} = ({〈𝑋, 𝑌〉} ∪ {〈𝑌, 𝑋〉}) |
44 | 43 | coeq2i 5769 |
. . . . . . . . 9
⊢ (𝐹 ∘ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}) = (𝐹 ∘ ({〈𝑋, 𝑌〉} ∪ {〈𝑌, 𝑋〉})) |
45 | | coundi 6151 |
. . . . . . . . 9
⊢ (𝐹 ∘ ({〈𝑋, 𝑌〉} ∪ {〈𝑌, 𝑋〉})) = ((𝐹 ∘ {〈𝑋, 𝑌〉}) ∪ (𝐹 ∘ {〈𝑌, 𝑋〉})) |
46 | 44, 45 | eqtri 2766 |
. . . . . . . 8
⊢ (𝐹 ∘ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}) = ((𝐹 ∘ {〈𝑋, 𝑌〉}) ∪ (𝐹 ∘ {〈𝑌, 𝑋〉})) |
47 | | df-pr 4564 |
. . . . . . . 8
⊢
{〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉} = ({〈𝑋, (𝐹‘𝑌)〉} ∪ {〈𝑌, (𝐹‘𝑋)〉}) |
48 | 42, 46, 47 | 3eqtr4g 2803 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉}) = {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}) |
49 | 48 | uneq2d 4097 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉})) |
50 | 20, 49 | eqtrid 2790 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉})) |
51 | | coires1 6168 |
. . . . . 6
⊢ (𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) = (𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) |
52 | 51 | uneq1i 4093 |
. . . . 5
⊢ ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}) |
53 | 50, 52 | eqtrdi 2794 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉})) |
54 | 19, 53 | syl3an1 1162 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉})) |
55 | 54 | f1oeq1d 6711 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, 𝑌〉, 〈𝑌, 𝑋〉})):𝐴–1-1-onto→𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}):𝐴–1-1-onto→𝐵)) |
56 | 18, 55 | mpbid 231 |
1
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {〈𝑋, (𝐹‘𝑌)〉, 〈𝑌, (𝐹‘𝑋)〉}):𝐴–1-1-onto→𝐵) |