MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofvswap Structured version   Visualization version   GIF version

Theorem f1ofvswap 7326
Description: Swapping two values in a bijection between two classes yields another bijection between those classes. (Contributed by BTernaryTau, 31-Aug-2024.)
Assertion
Ref Expression
f1ofvswap ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)

Proof of Theorem f1ofvswap
StepHypRef Expression
1 f1oi 6886 . . . . . 6 ( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌})
2 f1oprswap 6892 . . . . . 6 ((𝑋𝐴𝑌𝐴) → {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌})
3 disjdifr 4473 . . . . . . 7 ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅
4 f1oun 6867 . . . . . . 7 (((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) ∧ (((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅)) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
53, 3, 4mpanr12 705 . . . . . 6 ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
61, 2, 5sylancr 587 . . . . 5 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
7 prssi 4821 . . . . . . 7 ((𝑋𝐴𝑌𝐴) → {𝑋, 𝑌} ⊆ 𝐴)
8 undifr 4483 . . . . . . 7 ({𝑋, 𝑌} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
97, 8sylib 218 . . . . . 6 ((𝑋𝐴𝑌𝐴) → ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
10 f1oeq23 6839 . . . . . 6 ((((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴 ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
119, 9, 10syl2anc 584 . . . . 5 ((𝑋𝐴𝑌𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
126, 11mpbid 232 . . . 4 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴)
13 f1oco 6871 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
1412, 13sylan2 593 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
15143impb 1115 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
16 f1ofn 6849 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
17 coundi 6267 . . . . . 6 (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}))
18 fcoconst 7154 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
19183adant2 1132 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
20 xpsng 7159 . . . . . . . . . . . 12 ((𝑋𝐴𝑌𝐴) → ({𝑋} × {𝑌}) = {⟨𝑋, 𝑌⟩})
2120coeq2d 5873 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
22213adant1 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
23 fvex 6919 . . . . . . . . . . . 12 (𝐹𝑌) ∈ V
24 xpsng 7159 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝐹𝑌) ∈ V) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2523, 24mpan2 691 . . . . . . . . . . 11 (𝑋𝐴 → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
26253ad2ant2 1135 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2719, 22, 263eqtr3d 2785 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩}) = {⟨𝑋, (𝐹𝑌)⟩})
28 fcoconst 7154 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
29283adant3 1133 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
30 xpsng 7159 . . . . . . . . . . . . 13 ((𝑌𝐴𝑋𝐴) → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
3130coeq2d 5873 . . . . . . . . . . . 12 ((𝑌𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
3231ancoms 458 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
33323adant1 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
34 fvex 6919 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
35 xpsng 7159 . . . . . . . . . . . 12 ((𝑌𝐴 ∧ (𝐹𝑋) ∈ V) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3634, 35mpan2 691 . . . . . . . . . . 11 (𝑌𝐴 → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
37363ad2ant3 1136 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3829, 33, 373eqtr3d 2785 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑌, 𝑋⟩}) = {⟨𝑌, (𝐹𝑋)⟩})
3927, 38uneq12d 4169 . . . . . . . 8 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩})) = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩}))
40 df-pr 4629 . . . . . . . . . 10 {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩} = ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})
4140coeq2i 5871 . . . . . . . . 9 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩}))
42 coundi 6267 . . . . . . . . 9 (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
4341, 42eqtri 2765 . . . . . . . 8 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
44 df-pr 4629 . . . . . . . 8 {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩} = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩})
4539, 43, 443eqtr4g 2802 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
4645uneq2d 4168 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
4717, 46eqtrid 2789 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
48 coires1 6284 . . . . . 6 (𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) = (𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌}))
4948uneq1i 4164 . . . . 5 ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
5047, 49eqtrdi 2793 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5116, 50syl3an1 1164 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5251f1oeq1d 6843 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵))
5315, 52mpbid 232 1 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  cop 4632   I cid 5577   × cxp 5683  cres 5687  ccom 5689   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  dif1en  9200  dif1enOLD  9202
  Copyright terms: Public domain W3C validator