MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofvswap Structured version   Visualization version   GIF version

Theorem f1ofvswap 7059
Description: Swapping two values in a bijection between two classes yields another bijection between those classes. (Contributed by BTernaryTau, 31-Aug-2024.)
Assertion
Ref Expression
f1ofvswap ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)

Proof of Theorem f1ofvswap
StepHypRef Expression
1 f1oi 6643 . . . . . 6 ( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌})
2 f1oprswap 6649 . . . . . 6 ((𝑋𝐴𝑌𝐴) → {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌})
3 disjdifr 4372 . . . . . . 7 ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅
4 f1oun 6625 . . . . . . 7 (((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) ∧ (((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅ ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∩ {𝑋, 𝑌}) = ∅)) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
53, 3, 4mpanr12 704 . . . . . 6 ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})):(𝐴 ∖ {𝑋, 𝑌})–1-1-onto→(𝐴 ∖ {𝑋, 𝑌}) ∧ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}:{𝑋, 𝑌}–1-1-onto→{𝑋, 𝑌}) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
61, 2, 5sylancr 590 . . . . 5 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}))
7 prssi 4714 . . . . . . 7 ((𝑋𝐴𝑌𝐴) → {𝑋, 𝑌} ⊆ 𝐴)
8 undif 4381 . . . . . . . 8 ({𝑋, 𝑌} ⊆ 𝐴 ↔ ({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = 𝐴)
9 uncom 4060 . . . . . . . . 9 ({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})
109eqeq1i 2763 . . . . . . . 8 (({𝑋, 𝑌} ∪ (𝐴 ∖ {𝑋, 𝑌})) = 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
118, 10bitri 278 . . . . . . 7 ({𝑋, 𝑌} ⊆ 𝐴 ↔ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
127, 11sylib 221 . . . . . 6 ((𝑋𝐴𝑌𝐴) → ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴)
13 f1oeq23 6597 . . . . . 6 ((((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴 ∧ ((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) = 𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
1412, 12, 13syl2anc 587 . . . . 5 ((𝑋𝐴𝑌𝐴) → ((( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌})–1-1-onto→((𝐴 ∖ {𝑋, 𝑌}) ∪ {𝑋, 𝑌}) ↔ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴))
156, 14mpbid 235 . . . 4 ((𝑋𝐴𝑌𝐴) → (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴)
16 f1oco 6628 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}):𝐴1-1-onto𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
1715, 16sylan2 595 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
18173impb 1112 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵)
19 f1ofn 6607 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
20 coundi 6081 . . . . . 6 (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}))
21 fcoconst 6892 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
22213adant2 1128 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = ({𝑋} × {(𝐹𝑌)}))
23 xpsng 6897 . . . . . . . . . . . 12 ((𝑋𝐴𝑌𝐴) → ({𝑋} × {𝑌}) = {⟨𝑋, 𝑌⟩})
2423coeq2d 5707 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
25243adant1 1127 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑋} × {𝑌})) = (𝐹 ∘ {⟨𝑋, 𝑌⟩}))
26 fvex 6675 . . . . . . . . . . . 12 (𝐹𝑌) ∈ V
27 xpsng 6897 . . . . . . . . . . . 12 ((𝑋𝐴 ∧ (𝐹𝑌) ∈ V) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
2826, 27mpan2 690 . . . . . . . . . . 11 (𝑋𝐴 → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
29283ad2ant2 1131 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑋} × {(𝐹𝑌)}) = {⟨𝑋, (𝐹𝑌)⟩})
3022, 25, 293eqtr3d 2801 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩}) = {⟨𝑋, (𝐹𝑌)⟩})
31 fcoconst 6892 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
32313adant3 1129 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = ({𝑌} × {(𝐹𝑋)}))
33 xpsng 6897 . . . . . . . . . . . . 13 ((𝑌𝐴𝑋𝐴) → ({𝑌} × {𝑋}) = {⟨𝑌, 𝑋⟩})
3433coeq2d 5707 . . . . . . . . . . . 12 ((𝑌𝐴𝑋𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
3534ancoms 462 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
36353adant1 1127 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ ({𝑌} × {𝑋})) = (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
37 fvex 6675 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
38 xpsng 6897 . . . . . . . . . . . 12 ((𝑌𝐴 ∧ (𝐹𝑋) ∈ V) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
3937, 38mpan2 690 . . . . . . . . . . 11 (𝑌𝐴 → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
40393ad2ant3 1132 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ({𝑌} × {(𝐹𝑋)}) = {⟨𝑌, (𝐹𝑋)⟩})
4132, 36, 403eqtr3d 2801 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑌, 𝑋⟩}) = {⟨𝑌, (𝐹𝑋)⟩})
4230, 41uneq12d 4071 . . . . . . . 8 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩})) = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩}))
43 df-pr 4528 . . . . . . . . . 10 {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩} = ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})
4443coeq2i 5705 . . . . . . . . 9 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩}))
45 coundi 6081 . . . . . . . . 9 (𝐹 ∘ ({⟨𝑋, 𝑌⟩} ∪ {⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
4644, 45eqtri 2781 . . . . . . . 8 (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = ((𝐹 ∘ {⟨𝑋, 𝑌⟩}) ∪ (𝐹 ∘ {⟨𝑌, 𝑋⟩}))
47 df-pr 4528 . . . . . . . 8 {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩} = ({⟨𝑋, (𝐹𝑌)⟩} ∪ {⟨𝑌, (𝐹𝑋)⟩})
4842, 46, 473eqtr4g 2818 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩}) = {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
4948uneq2d 4070 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ (𝐹 ∘ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5020, 49syl5eq 2805 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
51 coires1 6098 . . . . . 6 (𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) = (𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌}))
5251uneq1i 4066 . . . . 5 ((𝐹 ∘ ( I ↾ (𝐴 ∖ {𝑋, 𝑌}))) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩})
5350, 52eqtrdi 2809 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5419, 53syl3an1 1160 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})) = ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}))
5554f1oeq1d 6601 . 2 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, 𝑌⟩, ⟨𝑌, 𝑋⟩})):𝐴1-1-onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵))
5618, 55mpbid 235 1 ((𝐹:𝐴1-1-onto𝐵𝑋𝐴𝑌𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋, 𝑌})) ∪ {⟨𝑋, (𝐹𝑌)⟩, ⟨𝑌, (𝐹𝑋)⟩}):𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3409  cdif 3857  cun 3858  cin 3859  wss 3860  c0 4227  {csn 4525  {cpr 4527  cop 4531   I cid 5432   × cxp 5525  cres 5529  ccom 5531   Fn wfn 6334  1-1-ontowf1o 6338  cfv 6339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347
This theorem is referenced by:  dif1en  8738
  Copyright terms: Public domain W3C validator