Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑈) =
(Base‘𝑈) |
2 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑈) = (.r‘𝑈) |
3 | | evlselv.u |
. . . . . . . . . . . . . . . 16
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
4 | | evlselv.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
5 | | difssd 4160 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
6 | 4, 5 | ssexd 5342 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
7 | | evlselv.r |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ CRing) |
8 | 3, 6, 7 | mplcrngd 42502 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ∈ CRing) |
9 | 8 | crngringd 20273 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ Ring) |
10 | 9 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring) |
11 | | evlselv.t |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (𝐽 mPoly 𝑈) |
12 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑇) =
(Base‘𝑇) |
13 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} = {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin} |
14 | | evlselv.p |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
15 | | evlselv.b |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 = (Base‘𝑃) |
16 | | evlselv.j |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
17 | | evlselv.f |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
18 | 14, 15, 3, 11, 12, 7, 16, 17 | selvcl 42538 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇)) |
19 | 11, 1, 12, 13, 18 | mplelf 22041 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
21 | 20 | ffvelcdmda 7118 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈)) |
22 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝑈) =
(mulGrp‘𝑈) |
23 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(.g‘(mulGrp‘𝑈)) =
(.g‘(mulGrp‘𝑈)) |
24 | 4, 16 | ssexd 5342 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ V) |
25 | 24 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝐽 ∈ V) |
26 | 8 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing) |
27 | | fvexd 6935 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝑈) ∈ V) |
28 | | evlselv.k |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐾 = (Base‘𝑅) |
29 | 28 | fvexi 6934 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐾 ∈ V |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ V) |
31 | | evlselv.l |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐿 = (algSc‘𝑈) |
32 | 7 | crngringd 20273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ∈ Ring) |
33 | 3, 1, 28, 31, 6, 32 | mplasclf 22112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐿:𝐾⟶(Base‘𝑈)) |
34 | 27, 30, 33 | elmapdd 8899 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐿 ∈ ((Base‘𝑈) ↑m 𝐾)) |
35 | | evlselv.a |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
36 | 35, 16 | elmapssresd 42236 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 ↾ 𝐽) ∈ (𝐾 ↑m 𝐽)) |
37 | 34, 36 | mapcod 42238 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐿 ∘ (𝐴 ↾ 𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽)) |
38 | 37 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴 ↾ 𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽)) |
39 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}) |
40 | 13, 1, 22, 23, 25, 26, 38, 39 | evlsvvvallem 42516 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑈)
Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))) ∈ (Base‘𝑈)) |
41 | 1, 2, 10, 21, 40 | ringcld 20286 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))) ∈ (Base‘𝑈)) |
42 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) |
43 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐))) |
44 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑢 = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))) → (𝑢‘𝑐) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))‘𝑐)) |
45 | 41, 42, 43, 44 | fmptco 7163 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))‘𝑐))) |
46 | 33 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝐿:𝐾⟶(Base‘𝑈)) |
47 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
48 | 47, 28 | mgpbas 20167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
49 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(.g‘(mulGrp‘𝑅)) =
(.g‘(mulGrp‘𝑅)) |
50 | 47 | ringmgp 20266 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
51 | 32, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
52 | 51 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (mulGrp‘𝑅) ∈ Mnd) |
53 | 13 | psrbagf 21961 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} → 𝑒:𝐽⟶ℕ0) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑒:𝐽⟶ℕ0) |
55 | 54 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (𝑒‘𝑗) ∈
ℕ0) |
56 | | elmapi 8907 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ (𝐾 ↑m 𝐼) → 𝐴:𝐼⟶𝐾) |
57 | 35, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐴:𝐼⟶𝐾) |
58 | 57, 16 | fssresd 6788 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐴 ↾ 𝐽):𝐽⟶𝐾) |
59 | 58 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝐴 ↾ 𝐽):𝐽⟶𝐾) |
60 | 59 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝐴 ↾ 𝐽)‘𝑗) ∈ 𝐾) |
61 | 48, 49, 52, 55, 60 | mulgnn0cld 19135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) ∈ 𝐾) |
62 | 46, 61 | cofmpt 7166 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = (𝑗 ∈ 𝐽 ↦ (𝐿‘((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
63 | 3 | mplassa 22065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐼 ∖ 𝐽) ∈ V ∧ 𝑅 ∈ CRing) → 𝑈 ∈ AssAlg) |
64 | 6, 7, 63 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑈 ∈ AssAlg) |
65 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
66 | 31, 65 | asclrhm 21933 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑈 ∈ AssAlg → 𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
67 | 64, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
68 | 3, 6, 7 | mplsca 22056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
69 | 68 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (Scalar‘𝑈) = 𝑅) |
70 | 69 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((Scalar‘𝑈) RingHom 𝑈) = (𝑅 RingHom 𝑈)) |
71 | 67, 70 | eleqtrd 2846 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐿 ∈ (𝑅 RingHom 𝑈)) |
72 | 47, 22 | rhmmhm 20505 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐿 ∈ (𝑅 RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈))) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈))) |
74 | 73 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈))) |
75 | 48, 49, 23 | mhmmulg 19155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)) ∧ (𝑒‘𝑗) ∈ ℕ0 ∧ ((𝐴 ↾ 𝐽)‘𝑗) ∈ 𝐾) → (𝐿‘((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴 ↾ 𝐽)‘𝑗)))) |
76 | 74, 55, 60, 75 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (𝐿‘((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴 ↾ 𝐽)‘𝑗)))) |
77 | 58 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (𝐴 ↾ 𝐽):𝐽⟶𝐾) |
78 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → 𝑗 ∈ 𝐽) |
79 | 77, 78 | fvco3d 7022 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗) = (𝐿‘((𝐴 ↾ 𝐽)‘𝑗))) |
80 | 79 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)) = ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴 ↾ 𝐽)‘𝑗)))) |
81 | 76, 80 | eqtr4d 2783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (𝐿‘((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))) |
82 | 81 | mpteq2dva 5266 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ (𝐿‘((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))) |
83 | 62, 82 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))) |
84 | 83 | oveq2d 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑈)
Σg (𝐿 ∘ (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) = ((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))) |
85 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(mulGrp‘(Scalar‘𝑈))) =
(Base‘(mulGrp‘(Scalar‘𝑈))) |
86 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(0g‘(mulGrp‘(Scalar‘𝑈))) =
(0g‘(mulGrp‘(Scalar‘𝑈))) |
87 | 68, 7 | eqeltrrd 2845 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (Scalar‘𝑈) ∈ CRing) |
88 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(mulGrp‘(Scalar‘𝑈)) = (mulGrp‘(Scalar‘𝑈)) |
89 | 88 | crngmgp 20268 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Scalar‘𝑈)
∈ CRing → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd) |
90 | 87, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(mulGrp‘(Scalar‘𝑈)) ∈ CMnd) |
91 | 90 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(mulGrp‘(Scalar‘𝑈)) ∈ CMnd) |
92 | 22 | ringmgp 20266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 ∈ Ring →
(mulGrp‘𝑈) ∈
Mnd) |
93 | 9, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (mulGrp‘𝑈) ∈ Mnd) |
94 | 93 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(mulGrp‘𝑈) ∈
Mnd) |
95 | 88, 22 | rhmmhm 20505 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈))) |
96 | 67, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈))) |
97 | 96 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝐿 ∈
((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈))) |
98 | 68 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑈))) |
99 | 28, 98 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑈))) |
100 | 99 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → 𝐾 = (Base‘(Scalar‘𝑈))) |
101 | 61, 100 | eleqtrd 2846 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) ∈ (Base‘(Scalar‘𝑈))) |
102 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
103 | 88, 102 | mgpbas 20167 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(Scalar‘𝑈)) =
(Base‘(mulGrp‘(Scalar‘𝑈))) |
104 | 101, 103 | eleqtrdi 2854 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) ∈
(Base‘(mulGrp‘(Scalar‘𝑈)))) |
105 | 104 | fmpttd 7149 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))):𝐽⟶(Base‘(mulGrp‘(Scalar‘𝑈)))) |
106 | 54 | feqmptd 6990 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑒 = (𝑗 ∈ 𝐽 ↦ (𝑒‘𝑗))) |
107 | 13 | psrbagfsupp 21962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} → 𝑒 finSupp 0) |
108 | 107 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑒 finSupp 0) |
109 | 106, 108 | eqbrtrrd 5190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ (𝑒‘𝑗)) finSupp 0) |
110 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0g‘(mulGrp‘𝑅)) =
(0g‘(mulGrp‘𝑅)) |
111 | 48, 110, 49 | mulg0 19114 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝐾 →
(0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅))) |
112 | 111 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ 𝐾) →
(0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅))) |
113 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(0g‘(mulGrp‘𝑅)) ∈ V) |
114 | 109, 112,
55, 60, 113 | fsuppssov1 9453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) finSupp
(0g‘(mulGrp‘𝑅))) |
115 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1r‘𝑅) = (1r‘𝑅) |
116 | 47, 115 | ringidval 20210 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
117 | 114, 116 | breqtrrdi 5208 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) finSupp (1r‘𝑅)) |
118 | 68 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1r‘𝑅) =
(1r‘(Scalar‘𝑈))) |
119 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1r‘(Scalar‘𝑈)) =
(1r‘(Scalar‘𝑈)) |
120 | 88, 119 | ringidval 20210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1r‘(Scalar‘𝑈)) =
(0g‘(mulGrp‘(Scalar‘𝑈))) |
121 | 118, 120 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1r‘𝑅) =
(0g‘(mulGrp‘(Scalar‘𝑈)))) |
122 | 121 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(1r‘𝑅) =
(0g‘(mulGrp‘(Scalar‘𝑈)))) |
123 | 117, 122 | breqtrd 5192 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) finSupp
(0g‘(mulGrp‘(Scalar‘𝑈)))) |
124 | 85, 86, 91, 94, 25, 97, 105, 123 | gsummhm 19980 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑈)
Σg (𝐿 ∘ (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
125 | 84, 124 | eqtr3d 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑈)
Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
126 | 125 | oveq2d 7464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))))) |
127 | 64 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ AssAlg) |
128 | 101 | fmpttd 7149 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))):𝐽⟶(Base‘(Scalar‘𝑈))) |
129 | 123, 120 | breqtrrdi 5208 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) finSupp
(1r‘(Scalar‘𝑈))) |
130 | 103, 120,
91, 25, 128, 129 | gsumcl 19957 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈))) |
131 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
132 | 31, 65, 102, 1, 2, 131 | asclmul2 21930 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ AssAlg ∧
((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈)) ∧ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈)) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))( ·𝑠
‘𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))) |
133 | 127, 130,
21, 132 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))( ·𝑠
‘𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))) |
134 | 126, 133 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))) = (((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))( ·𝑠
‘𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))) |
135 | 134 | fveq1d 6922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))‘𝑐) = ((((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))( ·𝑠
‘𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐)) |
136 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) |
137 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
138 | 99 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝐾 =
(Base‘(Scalar‘𝑈))) |
139 | 130, 138 | eleqtrrd 2847 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ 𝐾) |
140 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
141 | 3, 131, 28, 1, 136, 137, 139, 21, 140 | mplvscaval 22059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))( ·𝑠
‘𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) |
142 | 135, 141 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg
(𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) |
143 | 142 | mpteq2dva 5266 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))‘𝑐)) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))) |
144 | 45, 143 | eqtrd 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))) |
145 | 144 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑢 ∈
(Base‘𝑈) ↦
(𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))))) |
146 | 69 | fveq2d 6924 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅)) |
147 | 146 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅)) |
148 | 147 | oveq1d 7463 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
149 | 148 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = (((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) |
150 | 7 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing) |
151 | 148, 139 | eqeltrrd 2845 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ 𝐾) |
152 | 19 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈)) |
153 | 3, 28, 1, 137, 152 | mplelf 22041 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒):{𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
154 | 153 | ffvelcdmda 7118 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾) |
155 | 154 | an32s 651 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾) |
156 | 28, 136, 150, 151, 155 | crngcomd 20282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
157 | 149, 156 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
158 | 157 | mpteq2dva 5266 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))))) |
159 | 158 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((mulGrp‘(Scalar‘𝑈)) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))))) |
160 | 145, 159 | eqtrd 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑢 ∈
(Base‘𝑈) ↦
(𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))))) |
161 | 160 | oveq1d 7463 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑅 Σg
((𝑢 ∈
(Base‘𝑈) ↦
(𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))))(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
162 | | eqid 2740 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) |
163 | | fveq1 6919 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) → (𝑢‘𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))‘𝑐)) |
164 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢ (𝐽 eval 𝑈) = (𝐽 eval 𝑈) |
165 | 164, 11, 12, 13, 1, 22, 23, 2, 24, 8, 18, 37 | evlvvval 42528 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) |
166 | 164, 11, 12, 1, 24, 8, 18, 37 | evlcl 42527 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽))) ∈ (Base‘𝑈)) |
167 | 165, 166 | eqeltrrd 2845 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) ∈ (Base‘𝑈)) |
168 | 167 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑈 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))) ∈ (Base‘𝑈)) |
169 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑈 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))‘𝑐) ∈ V) |
170 | 162, 163,
168, 169 | fvmptd3 7052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))‘𝑐)) |
171 | | eqid 2740 |
. . . . . . . . . 10
⊢
(0g‘𝑈) = (0g‘𝑈) |
172 | 9 | ringcmnd 20307 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ CMnd) |
173 | 172 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CMnd) |
174 | 7 | crnggrpd 20274 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Grp) |
175 | 174 | grpmndd 18986 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Mnd) |
176 | 175 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd) |
177 | | ovex 7481 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐽) ∈ V |
178 | 177 | rabex 5357 |
. . . . . . . . . . 11
⊢ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∈
V |
179 | 178 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∈
V) |
180 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐼 ∖ 𝐽) ∈ V) |
181 | 174 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp) |
182 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
183 | 3, 1, 137, 162, 180, 181, 182 | mplmapghm 42511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∈ (𝑈 GrpHom 𝑅)) |
184 | | ghmmhm 19266 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∈ (𝑈 GrpHom 𝑅) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∈ (𝑈 MndHom 𝑅)) |
185 | 183, 184 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∈ (𝑈 MndHom 𝑅)) |
186 | 41 | fmpttd 7149 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))):{𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
187 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝐽 ∈ V) |
188 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing) |
189 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇)) |
190 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴 ↾ 𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽)) |
191 | 13, 11, 12, 1, 22, 23, 2, 187, 188, 189, 190 | evlvvvallem 42529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))) finSupp (0g‘𝑈)) |
192 | 1, 171, 173, 176, 179, 185, 186, 191 | gsummhm 19980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑢 ∈
(Base‘𝑈) ↦
(𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) = ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))))) |
193 | 165 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))) |
194 | 193 | fveq1d 6922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗)))))))‘𝑐)) |
195 | 170, 192,
194 | 3eqtr4rd 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐) = (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))))) |
196 | 195 | oveq1d 7463 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = ((𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢‘𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r‘𝑈)((mulGrp‘𝑈) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴 ↾ 𝐽))‘𝑗))))))))(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
197 | | eqid 2740 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
198 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
199 | 47 | crngmgp 20268 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
200 | 7, 199 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
201 | 200 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(mulGrp‘𝑅) ∈
CMnd) |
202 | 51 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (mulGrp‘𝑅) ∈ Mnd) |
203 | 137 | psrbagf 21961 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
204 | 203 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
205 | 204 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (𝑐‘𝑘) ∈
ℕ0) |
206 | 57, 5 | fssresd 6788 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ↾ (𝐼 ∖ 𝐽)):(𝐼 ∖ 𝐽)⟶𝐾) |
207 | 206 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐴 ↾ (𝐼 ∖ 𝐽)):(𝐼 ∖ 𝐽)⟶𝐾) |
208 | 207 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈ 𝐾) |
209 | 48, 49, 202, 205, 208 | mulgnn0cld 19135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) ∈ 𝐾) |
210 | 209 | fmpttd 7149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))):(𝐼 ∖ 𝐽)⟶𝐾) |
211 | 204 | feqmptd 6990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑐 = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (𝑐‘𝑘))) |
212 | 137 | psrbagfsupp 21962 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑐 finSupp 0) |
213 | 212 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑐 finSupp 0) |
214 | 211, 213 | eqbrtrrd 5190 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (𝑐‘𝑘)) finSupp 0) |
215 | 48, 110, 49 | mulg0 19114 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝐾 →
(0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅))) |
216 | 215 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ 𝐾) →
(0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅))) |
217 | | fvexd 6935 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (𝑐‘𝑘) ∈ V) |
218 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(0g‘(mulGrp‘𝑅)) ∈ V) |
219 | 214, 216,
217, 208, 218 | fsuppssov1 9453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) finSupp
(0g‘(mulGrp‘𝑅))) |
220 | 48, 110, 201, 180, 210, 219 | gsumcl 19957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) ∈ 𝐾) |
221 | 32 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
222 | 28, 136, 221, 155, 151 | ringcld 20286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) ∈ 𝐾) |
223 | 178 | mptex 7260 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V |
224 | 223 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V) |
225 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(0g‘𝑅)
∈ V) |
226 | | funmpt 6616 |
. . . . . . . . . . 11
⊢ Fun
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) |
227 | 226 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → Fun
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) |
228 | 11, 12, 171, 18, 8 | mplelsfi 22038 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g‘𝑈)) |
229 | 228 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g‘𝑈)) |
230 | | ssidd 4032 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈))) |
231 | | fvexd 6935 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(0g‘𝑈)
∈ V) |
232 | 20, 230, 179, 231 | suppssr 8236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∖
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈)))) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) = (0g‘𝑈)) |
233 | 232 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∖
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = ((0g‘𝑈)‘𝑐)) |
234 | 3, 137, 197, 171, 6, 174 | mpl0 22049 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0g‘𝑈) = ({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
235 | 234 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(0g‘𝑈) =
({𝑓 ∈
(ℕ0 ↑m (𝐼 ∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
236 | 235 | fveq1d 6922 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((0g‘𝑈)‘𝑐) = (({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑐)) |
237 | | fvex 6933 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝑅) ∈ V |
238 | 237 | fvconst2 7241 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → (({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑐) = (0g‘𝑅)) |
239 | 238 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(({𝑓 ∈
(ℕ0 ↑m (𝐼 ∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑐) = (0g‘𝑅)) |
240 | 236, 239 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((0g‘𝑈)‘𝑐) = (0g‘𝑅)) |
241 | 240 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∖
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈)))) →
((0g‘𝑈)‘𝑐) = (0g‘𝑅)) |
242 | 233, 241 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∖
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = (0g‘𝑅)) |
243 | 242, 179 | suppss2 8241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) supp (0g‘𝑅)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g‘𝑈))) |
244 | 224, 225,
227, 229, 243 | fsuppsssuppgd 9451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) finSupp (0g‘𝑅)) |
245 | 32 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ 𝐾) → 𝑅 ∈ Ring) |
246 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ 𝐾) → 𝑣 ∈ 𝐾) |
247 | 28, 136, 197, 245, 246 | ringlzd 20318 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ 𝐾) → ((0g‘𝑅)(.r‘𝑅)𝑣) = (0g‘𝑅)) |
248 | 244, 247,
155, 151, 225 | fsuppssov1 9453 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) finSupp (0g‘𝑅)) |
249 | 28, 197, 136, 198, 179, 220, 222, 248 | gsummulc1 20339 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
250 | 161, 196,
249 | 3eqtr4d 2790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))))) |
251 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑒 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)) |
252 | 251 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)) |
253 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → 𝑏 = 𝑐) |
254 | 252, 253 | fveq12d 6927 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) |
255 | | fveq1 6919 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑒 → (𝑎‘𝑗) = (𝑒‘𝑗)) |
256 | 255 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (𝑎‘𝑗) = (𝑒‘𝑗)) |
257 | 256 | oveq1d 7463 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
258 | 257 | mpteq2dv 5268 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
259 | 258 | oveq2d 7464 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
260 | 254, 259 | oveq12d 7466 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
261 | | fveq1 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (𝑏‘𝑘) = (𝑐‘𝑘)) |
262 | 261 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (𝑏‘𝑘) = (𝑐‘𝑘)) |
263 | 262 | oveq1d 7463 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
264 | 263 | mpteq2dv 5268 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
265 | 264 | oveq2d 7464 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) |
266 | 260, 265 | oveq12d 7466 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝑐 ∧ 𝑎 = 𝑒) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
267 | | eqid 2740 |
. . . . . . . . . 10
⊢ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) = (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
268 | | ovex 7481 |
. . . . . . . . . 10
⊢
(((((((𝐼 selectVars
𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) ∈ V |
269 | 266, 267,
268 | ovmpoa 7605 |
. . . . . . . . 9
⊢ ((𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
270 | 269 | adantll 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
271 | 270 | mpteq2dva 5266 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒)) = (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) |
272 | 271 | oveq2d 7464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑒‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))))) |
273 | 250, 272 | eqtr4d 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒)))) |
274 | 273 | mpteq2dva 5266 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) = (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒))))) |
275 | 274 | oveq2d 7464 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒)))))) |
276 | 32 | ringcmnd 20307 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
277 | | ovex 7481 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
278 | 277 | rabex 5357 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
279 | 278 | a1i 11 |
. . . . 5
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
280 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
281 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
282 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
283 | 4 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
284 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐽 ⊆ 𝐼) |
285 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
286 | 282, 13, 283, 284, 285 | psrbagres 42501 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ 𝐽) ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}) |
287 | 281, 286 | ffvelcdmd 7119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽)) ∈ (Base‘𝑈)) |
288 | 3, 28, 1, 137, 287 | mplelf 22041 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽)):{𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
289 | | difssd 4160 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
290 | 282, 137,
283, 289, 285 | psrbagres 42501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼 ∖ 𝐽)) ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
291 | 288, 290 | ffvelcdmd 7119 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽))) ∈ 𝐾) |
292 | 200 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(mulGrp‘𝑅) ∈
CMnd) |
293 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐽 ∈ V) |
294 | 51 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (mulGrp‘𝑅) ∈ Mnd) |
295 | 282 | psrbagf 21961 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
296 | 295 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
297 | 296, 284 | fssresd 6788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ 𝐽):𝐽⟶ℕ0) |
298 | 297 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑑 ↾ 𝐽)‘𝑗) ∈
ℕ0) |
299 | 58 | ffvelcdmda 7118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐽) → ((𝐴 ↾ 𝐽)‘𝑗) ∈ 𝐾) |
300 | 299 | adantlr 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝐴 ↾ 𝐽)‘𝑗) ∈ 𝐾) |
301 | 48, 49, 294, 298, 300 | mulgnn0cld 19135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) ∈ 𝐾) |
302 | 301 | fmpttd 7149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))):𝐽⟶𝐾) |
303 | 24 | mptexd 7261 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) ∈ V) |
304 | 303 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) ∈ V) |
305 | | fvexd 6935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(0g‘(mulGrp‘𝑅)) ∈ V) |
306 | | funmpt 6616 |
. . . . . . . . . . 11
⊢ Fun
(𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
307 | 306 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → Fun
(𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
308 | 282 | psrbagfsupp 21962 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑 finSupp 0) |
309 | 308 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 finSupp 0) |
310 | | 0zd 12651 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 0 ∈
ℤ) |
311 | 309, 310 | fsuppres 9462 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ 𝐽) finSupp 0) |
312 | | ssidd 4032 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ↾ 𝐽) supp 0) ⊆ ((𝑑 ↾ 𝐽) supp 0)) |
313 | 297, 312,
293, 310 | suppssr 8236 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑 ↾ 𝐽) supp 0))) → ((𝑑 ↾ 𝐽)‘𝑗) = 0) |
314 | 313 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑 ↾ 𝐽) supp 0))) → (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) =
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
315 | | eldifi 4154 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝐽 ∖ ((𝑑 ↾ 𝐽) supp 0)) → 𝑗 ∈ 𝐽) |
316 | 48, 110, 49 | mulg0 19114 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ↾ 𝐽)‘𝑗) ∈ 𝐾 →
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅))) |
317 | 300, 316 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) →
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅))) |
318 | 315, 317 | sylan2 592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑 ↾ 𝐽) supp 0))) →
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅))) |
319 | 314, 318 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑 ↾ 𝐽) supp 0))) → (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅))) |
320 | 319, 293 | suppss2 8241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) supp
(0g‘(mulGrp‘𝑅))) ⊆ ((𝑑 ↾ 𝐽) supp 0)) |
321 | 304, 305,
307, 311, 320 | fsuppsssuppgd 9451 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) finSupp
(0g‘(mulGrp‘𝑅))) |
322 | 48, 110, 292, 293, 302, 321 | gsumcl 19957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ 𝐾) |
323 | 28, 136, 280, 291, 322 | ringcld 20286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) ∈ 𝐾) |
324 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐼 ∖ 𝐽) ∈ V) |
325 | 51 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (mulGrp‘𝑅) ∈ Mnd) |
326 | 296, 289 | fssresd 6788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼 ∖ 𝐽)):(𝐼 ∖ 𝐽)⟶ℕ0) |
327 | 326 | ffvelcdmda 7118 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈
ℕ0) |
328 | 206 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈ 𝐾) |
329 | 328 | adantlr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈ 𝐾) |
330 | 48, 49, 325, 327, 329 | mulgnn0cld 19135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) ∈ 𝐾) |
331 | 330 | fmpttd 7149 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))):(𝐼 ∖ 𝐽)⟶𝐾) |
332 | 324 | mptexd 7261 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) ∈ V) |
333 | | funmpt 6616 |
. . . . . . . . . 10
⊢ Fun
(𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
334 | 333 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → Fun
(𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
335 | 309, 310 | fsuppres 9462 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼 ∖ 𝐽)) finSupp 0) |
336 | | ssidd 4032 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0) ⊆ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0)) |
337 | 326, 336,
324, 310 | suppssr 8236 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0))) → ((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘) = 0) |
338 | 337 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0))) → (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) =
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
339 | | eldifi 4154 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0)) → 𝑘 ∈ (𝐼 ∖ 𝐽)) |
340 | 339, 329 | sylan2 592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0))) → ((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈ 𝐾) |
341 | 48, 110, 49 | mulg0 19114 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) ∈ 𝐾 →
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅))) |
342 | 340, 341 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0))) →
(0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅))) |
343 | 338, 342 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼 ∖ 𝐽) ∖ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0))) → (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅))) |
344 | 343, 324 | suppss2 8241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) supp
(0g‘(mulGrp‘𝑅))) ⊆ ((𝑑 ↾ (𝐼 ∖ 𝐽)) supp 0)) |
345 | 332, 305,
334, 335, 344 | fsuppsssuppgd 9451 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) finSupp
(0g‘(mulGrp‘𝑅))) |
346 | 48, 110, 292, 324, 331, 345 | gsumcl 19957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) ∈ 𝐾) |
347 | 28, 136, 280, 323, 346 | ringcld 20286 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) ∈ 𝐾) |
348 | 347 | fmpttd 7149 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
349 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing) |
350 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹 ∈ 𝐵) |
351 | 282, 14, 15, 349, 284, 350, 285 | selvvvval 42540 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽))) = (𝐹‘𝑑)) |
352 | 351 | mpteq2dva 5266 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘𝑑))) |
353 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
354 | 14, 353, 15, 282, 17 | mplelf 22041 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
355 | 354 | feqmptd 6990 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘𝑑))) |
356 | 14, 15, 197, 17, 7 | mplelsfi 22038 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
357 | 355, 356 | eqbrtrrd 5190 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘𝑑)) finSupp (0g‘𝑅)) |
358 | 352, 357 | eqbrtrd 5188 |
. . . . . . 7
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))) finSupp (0g‘𝑅)) |
359 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐾) → 𝑅 ∈ Ring) |
360 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐾) → 𝑣 ∈ 𝐾) |
361 | 28, 136, 197, 359, 360 | ringlzd 20318 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐾) → ((0g‘𝑅)(.r‘𝑅)𝑣) = (0g‘𝑅)) |
362 | | fvexd 6935 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽))) ∈ V) |
363 | | fvexd 6935 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
364 | 358, 361,
362, 322, 363 | fsuppssov1 9453 |
. . . . . 6
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) finSupp (0g‘𝑅)) |
365 | | ovexd 7483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) ∈ V) |
366 | 364, 361,
365, 346, 363 | fsuppssov1 9453 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) finSupp (0g‘𝑅)) |
367 | | eqid 2740 |
. . . . . 6
⊢ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)) |
368 | 282, 13, 137, 367, 4, 16 | evlselvlem 42541 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
369 | 28, 197, 276, 279, 348, 366, 368 | gsumf1o 19958 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎))))) |
370 | 137 | psrbagf 21961 |
. . . . . . . . . 10
⊢ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑏:(𝐼 ∖ 𝐽)⟶ℕ0) |
371 | 370 | ad2antrl 727 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑏:(𝐼 ∖ 𝐽)⟶ℕ0) |
372 | 13 | psrbagf 21961 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} → 𝑎:𝐽⟶ℕ0) |
373 | 372 | ad2antll 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑎:𝐽⟶ℕ0) |
374 | | disjdifr 4496 |
. . . . . . . . . 10
⊢ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅ |
375 | 374 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
376 | 371, 373,
375 | fun2d 6785 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑏 ∪ 𝑎):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0) |
377 | | undifr 4506 |
. . . . . . . . . . 11
⊢ (𝐽 ⊆ 𝐼 ↔ ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
378 | 16, 377 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
379 | 378 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
380 | 379 | feq2d 6733 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑏 ∪ 𝑎):𝐼⟶ℕ0)) |
381 | 376, 380 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑏 ∪ 𝑎):𝐼⟶ℕ0) |
382 | | vex 3492 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
383 | | vex 3492 |
. . . . . . . . . . 11
⊢ 𝑎 ∈ V |
384 | 382, 383 | unex 7779 |
. . . . . . . . . 10
⊢ (𝑏 ∪ 𝑎) ∈ V |
385 | 384 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑏 ∪ 𝑎) ∈ V) |
386 | | 0zd 12651 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 0
∈ ℤ) |
387 | 381 | ffund 6751 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → Fun
(𝑏 ∪ 𝑎)) |
388 | 137 | psrbagfsupp 21962 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑏 finSupp 0) |
389 | 388 | ad2antrl 727 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑏 finSupp 0) |
390 | 13 | psrbagfsupp 21962 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} → 𝑎 finSupp 0) |
391 | 390 | ad2antll 728 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑎 finSupp 0) |
392 | 389, 391 | fsuppun 9456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎) supp 0) ∈
Fin) |
393 | 385, 386,
387, 392 | isfsuppd 9436 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑏 ∪ 𝑎) finSupp 0) |
394 | | fcdmnn0fsuppg 12612 |
. . . . . . . . 9
⊢ (((𝑏 ∪ 𝑎) ∈ V ∧ (𝑏 ∪ 𝑎):𝐼⟶ℕ0) → ((𝑏 ∪ 𝑎) finSupp 0 ↔ (◡(𝑏 ∪ 𝑎) “ ℕ) ∈
Fin)) |
395 | 385, 381,
394 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎) finSupp 0 ↔ (◡(𝑏 ∪ 𝑎) “ ℕ) ∈
Fin)) |
396 | 393, 395 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (◡(𝑏 ∪ 𝑎) “ ℕ) ∈
Fin) |
397 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝐼 ∈ 𝑉) |
398 | 282 | psrbag 21960 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → ((𝑏 ∪ 𝑎) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ ((𝑏 ∪ 𝑎):𝐼⟶ℕ0 ∧ (◡(𝑏 ∪ 𝑎) “ ℕ) ∈
Fin))) |
399 | 397, 398 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ ((𝑏 ∪ 𝑎):𝐼⟶ℕ0 ∧ (◡(𝑏 ∪ 𝑎) “ ℕ) ∈
Fin))) |
400 | 381, 396,
399 | mpbir2and 712 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑏 ∪ 𝑎) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
401 | | eqidd 2741 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎))) |
402 | | eqidd 2741 |
. . . . . 6
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) |
403 | | reseq1 6003 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (𝑑 ↾ 𝐽) = ((𝑏 ∪ 𝑎) ↾ 𝐽)) |
404 | 403 | fveq2d 6924 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))) |
405 | | reseq1 6003 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (𝑑 ↾ (𝐼 ∖ 𝐽)) = ((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))) |
406 | 404, 405 | fveq12d 6927 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))) |
407 | 403 | fveq1d 6922 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((𝑑 ↾ 𝐽)‘𝑗) = (((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)) |
408 | 407 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
409 | 408 | mpteq2dv 5268 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
410 | 409 | oveq2d 7464 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
411 | 406, 410 | oveq12d 7466 |
. . . . . . . . 9
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
412 | 405 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘) = (((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)) |
413 | 412 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
414 | 413 | mpteq2dv 5268 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
415 | 414 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑑 = (𝑏 ∪ 𝑎) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) |
416 | 411, 415 | oveq12d 7466 |
. . . . . . . 8
⊢ (𝑑 = (𝑏 ∪ 𝑎) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
417 | 384, 416 | csbie 3957 |
. . . . . . 7
⊢
⦋(𝑏
∪ 𝑎) / 𝑑⦌(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) |
418 | 370 | ffnd 6748 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑏 Fn (𝐼 ∖ 𝐽)) |
419 | 418 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑏 Fn (𝐼 ∖ 𝐽)) |
420 | 373 | ffnd 6748 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑎 Fn 𝐽) |
421 | | fnunres2 6692 |
. . . . . . . . . . . 12
⊢ ((𝑏 Fn (𝐼 ∖ 𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑏 ∪ 𝑎) ↾ 𝐽) = 𝑎) |
422 | 419, 420,
375, 421 | syl3anc 1371 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎) ↾ 𝐽) = 𝑎) |
423 | 422 | fveq2d 6924 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)) |
424 | | fnunres1 6691 |
. . . . . . . . . . 11
⊢ ((𝑏 Fn (𝐼 ∖ 𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)) = 𝑏) |
425 | 419, 420,
375, 424 | syl3anc 1371 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)) = 𝑏) |
426 | 423, 425 | fveq12d 6927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)) |
427 | 422 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗) = (𝑎‘𝑗)) |
428 | 427 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
429 | 428 | mpteq2dv 5268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) = (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
430 | 429 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
431 | 426, 430 | oveq12d 7466 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))) |
432 | 425 | fveq1d 6922 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘) = (𝑏‘𝑘)) |
433 | 432 | oveq1d 7463 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
434 | 433 | mpteq2dv 5268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
435 | 434 | oveq2d 7464 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((mulGrp‘𝑅)
Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) |
436 | 431, 435 | oveq12d 7466 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏 ∪ 𝑎) ↾ 𝐽))‘((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((((𝑏 ∪ 𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((((𝑏 ∪ 𝑎) ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
437 | 417, 436 | eqtrid 2792 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
⦋(𝑏 ∪
𝑎) / 𝑑⦌(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
438 | 400, 401,
402, 437 | fmpocos 42229 |
. . . . 5
⊢ (𝜑 → ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎))) = (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) |
439 | 438 | oveq2d 7464 |
. . . 4
⊢ (𝜑 → (𝑅 Σg ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)))) = (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))))) |
440 | | ovex 7481 |
. . . . . . 7
⊢
(ℕ0 ↑m (𝐼 ∖ 𝐽)) ∈ V |
441 | 440 | rabex 5357 |
. . . . . 6
⊢ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
442 | 441 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) |
443 | 178 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ∈
V) |
444 | 32 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ Ring) |
445 | 19 | ffvelcdmda 7118 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) ∈ (Base‘𝑈)) |
446 | 3, 28, 1, 137, 445 | mplelf 22041 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎):{𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
447 | 446 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾) |
448 | 447 | an32s 651 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin}) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾) |
449 | 448 | anasss 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾) |
450 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝐽 ∈ V) |
451 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ CRing) |
452 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝐴 ↾ 𝐽) ∈ (𝐾 ↑m 𝐽)) |
453 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin}) |
454 | 13, 28, 47, 49, 450, 451, 452, 453 | evlsvvvallem 42516 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) ∈ 𝐾) |
455 | 28, 136, 444, 449, 454 | ringcld 20286 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) ∈ 𝐾) |
456 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝐼 ∖ 𝐽) ∈ V) |
457 | 35, 5 | elmapssresd 42236 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ↾ (𝐼 ∖ 𝐽)) ∈ (𝐾 ↑m (𝐼 ∖ 𝐽))) |
458 | 457 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → (𝐴 ↾ (𝐼 ∖ 𝐽)) ∈ (𝐾 ↑m (𝐼 ∖ 𝐽))) |
459 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) → 𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
460 | 137, 28, 47, 49, 456, 451, 458, 459 | evlsvvvallem 42516 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
((mulGrp‘𝑅)
Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) ∈ 𝐾) |
461 | 28, 136, 444, 455, 460 | ringcld 20286 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})) →
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) ∈ 𝐾) |
462 | 461 | ralrimivva 3208 |
. . . . . 6
⊢ (𝜑 → ∀𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) ∈ 𝐾) |
463 | 267 | fmpo 8109 |
. . . . . 6
⊢
(∀𝑏 ∈
{𝑓 ∈
(ℕ0 ↑m (𝐼 ∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) ∈ 𝐾 ↔ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})⟶𝐾) |
464 | 462, 463 | sylib 218 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})⟶𝐾) |
465 | | f1of1 6861 |
. . . . . . . 8
⊢ ((𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
466 | 368, 465 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎)):({𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin})–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
467 | 278 | mptex 7260 |
. . . . . . . 8
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∈ V |
468 | 467 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∈ V) |
469 | 366, 466,
363, 468 | fsuppco 9471 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑏 ∪ 𝑎))) finSupp (0g‘𝑅)) |
470 | 438, 469 | eqbrtrrd 5190 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) finSupp (0g‘𝑅)) |
471 | 28, 197, 276, 442, 443, 464, 470 | gsumxp 20018 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒)))))) |
472 | 369, 439,
471 | 3eqtrd 2784 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ ((𝑎‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑏‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))𝑒)))))) |
473 | 28, 136, 280, 291, 322, 346 | ringassd 20284 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)(((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) |
474 | 47, 136 | mgpplusg 20165 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
475 | 51 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (mulGrp‘𝑅) ∈ Mnd) |
476 | 296 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
477 | 57 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐴:𝐼⟶𝐾) |
478 | 477 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝐴‘𝑖) ∈ 𝐾) |
479 | 48, 49, 475, 476, 478 | mulgnn0cld 19135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)) ∈ 𝐾) |
480 | 479 | fmpttd 7149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))):𝐼⟶𝐾) |
481 | 296 | feqmptd 6990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 = (𝑖 ∈ 𝐼 ↦ (𝑑‘𝑖))) |
482 | 481, 309 | eqbrtrrd 5190 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ 𝐼 ↦ (𝑑‘𝑖)) finSupp 0) |
483 | 111 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ 𝐾) →
(0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅))) |
484 | 482, 483,
476, 478, 305 | fsuppssov1 9453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) finSupp
(0g‘(mulGrp‘𝑅))) |
485 | | disjdif 4495 |
. . . . . . . . . 10
⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ |
486 | 485 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅) |
487 | | undif 4505 |
. . . . . . . . . . . 12
⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
488 | 16, 487 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
489 | 488 | eqcomd 2746 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 = (𝐽 ∪ (𝐼 ∖ 𝐽))) |
490 | 489 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 = (𝐽 ∪ (𝐼 ∖ 𝐽))) |
491 | 48, 110, 474, 292, 283, 480, 484, 486, 490 | gsumsplit 19970 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))) = (((mulGrp‘𝑅) Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ 𝐽))(.r‘𝑅)((mulGrp‘𝑅) Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ (𝐼 ∖ 𝐽))))) |
492 | 284 | resmptd 6069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ 𝐽) = (𝑖 ∈ 𝐽 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))) |
493 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑑‘𝑖) = (𝑑‘𝑗)) |
494 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) |
495 | 493, 494 | oveq12d 7466 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)) = ((𝑑‘𝑗)(.g‘(mulGrp‘𝑅))(𝐴‘𝑗))) |
496 | 495 | cbvmptv 5279 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝐽 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) = (𝑗 ∈ 𝐽 ↦ ((𝑑‘𝑗)(.g‘(mulGrp‘𝑅))(𝐴‘𝑗))) |
497 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → 𝑗 ∈ 𝐽) |
498 | 497 | fvresd 6940 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑑 ↾ 𝐽)‘𝑗) = (𝑑‘𝑗)) |
499 | 497 | fvresd 6940 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝐴 ↾ 𝐽)‘𝑗) = (𝐴‘𝑗)) |
500 | 498, 499 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)) = ((𝑑‘𝑗)(.g‘(mulGrp‘𝑅))(𝐴‘𝑗))) |
501 | 500 | eqcomd 2746 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ 𝐽) → ((𝑑‘𝑗)(.g‘(mulGrp‘𝑅))(𝐴‘𝑗)) = (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))) |
502 | 501 | mpteq2dva 5266 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑗 ∈ 𝐽 ↦ ((𝑑‘𝑗)(.g‘(mulGrp‘𝑅))(𝐴‘𝑗))) = (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
503 | 496, 502 | eqtrid 2792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ 𝐽 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) = (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
504 | 492, 503 | eqtrd 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ 𝐽) = (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))) |
505 | 504 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ 𝐽)) = ((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))) |
506 | 289 | resmptd 6069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ (𝐼 ∖ 𝐽)) = (𝑖 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))) |
507 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (𝑑‘𝑖) = (𝑑‘𝑘)) |
508 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (𝐴‘𝑖) = (𝐴‘𝑘)) |
509 | 507, 508 | oveq12d 7466 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)) = ((𝑑‘𝑘)(.g‘(mulGrp‘𝑅))(𝐴‘𝑘))) |
510 | 509 | cbvmptv 5279 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑑‘𝑘)(.g‘(mulGrp‘𝑅))(𝐴‘𝑘))) |
511 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → 𝑘 ∈ (𝐼 ∖ 𝐽)) |
512 | 511 | fvresd 6940 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘) = (𝑑‘𝑘)) |
513 | 511 | fvresd 6940 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘) = (𝐴‘𝑘)) |
514 | 512, 513 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)) = ((𝑑‘𝑘)(.g‘(mulGrp‘𝑅))(𝐴‘𝑘))) |
515 | 514 | eqcomd 2746 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑑‘𝑘)(.g‘(mulGrp‘𝑅))(𝐴‘𝑘)) = (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))) |
516 | 515 | mpteq2dva 5266 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑑‘𝑘)(.g‘(mulGrp‘𝑅))(𝐴‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
517 | 510, 516 | eqtrid 2792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
518 | 506, 517 | eqtrd 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ (𝐼 ∖ 𝐽)) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))) |
519 | 518 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((mulGrp‘𝑅)
Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ (𝐼 ∖ 𝐽))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) |
520 | 505, 519 | oveq12d 7466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((mulGrp‘𝑅)
Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ 𝐽))(.r‘𝑅)((mulGrp‘𝑅) Σg ((𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))) ↾ (𝐼 ∖ 𝐽)))) = (((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) |
521 | 491, 520 | eqtr2d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((mulGrp‘𝑅)
Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = ((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))))) |
522 | 351, 521 | oveq12d 7466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)(((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) = ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))))) |
523 | 473, 522 | eqtrd 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))) = ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))))) |
524 | 523 | mpteq2dva 5266 |
. . . 4
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖))))))) |
525 | 524 | oveq2d 7464 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑 ↾ 𝐽))‘(𝑑 ↾ (𝐼 ∖ 𝐽)))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑗 ∈ 𝐽 ↦ (((𝑑 ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴 ↾ 𝐽)‘𝑗)))))(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑑 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))))))) |
526 | 275, 472,
525 | 3eqtr2d 2786 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))))))) |
527 | | eqid 2740 |
. . 3
⊢ ((𝐼 ∖ 𝐽) eval 𝑅) = ((𝐼 ∖ 𝐽) eval 𝑅) |
528 | 527, 3, 1, 137, 28, 47, 49, 136, 6, 7, 166, 457 | evlvvval 42528 |
. 2
⊢ (𝜑 → ((((𝐼 ∖ 𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽))))‘(𝐴 ↾ (𝐼 ∖ 𝐽))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
(((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽)))‘𝑐)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑐‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼 ∖ 𝐽))‘𝑘)))))))) |
529 | | eqid 2740 |
. . 3
⊢ (𝐼 eval 𝑅) = (𝐼 eval 𝑅) |
530 | 529, 14, 15, 282, 28, 47, 49, 136, 4, 7, 17, 35 | evlvvval 42528 |
. 2
⊢ (𝜑 → (((𝐼 eval 𝑅)‘𝐹)‘𝐴) = (𝑅 Σg (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ ((𝐹‘𝑑)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖)(.g‘(mulGrp‘𝑅))(𝐴‘𝑖)))))))) |
531 | 526, 528,
530 | 3eqtr4d 2790 |
1
⊢ (𝜑 → ((((𝐼 ∖ 𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴 ↾ 𝐽))))‘(𝐴 ↾ (𝐼 ∖ 𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴)) |