Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselv Structured version   Visualization version   GIF version

Theorem evlselv 42628
Description: Evaluating a selection of variable assignments, then evaluating the rest of the variables, is the same as evaluating with all assignments. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselv.p 𝑃 = (𝐼 mPoly 𝑅)
evlselv.k 𝐾 = (Base‘𝑅)
evlselv.b 𝐵 = (Base‘𝑃)
evlselv.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
evlselv.t 𝑇 = (𝐽 mPoly 𝑈)
evlselv.l 𝐿 = (algSc‘𝑈)
evlselv.i (𝜑𝐼𝑉)
evlselv.r (𝜑𝑅 ∈ CRing)
evlselv.j (𝜑𝐽𝐼)
evlselv.f (𝜑𝐹𝐵)
evlselv.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlselv (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴))

Proof of Theorem evlselv
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑖 𝑗 𝑘 𝑢 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2731 . . . . . . . . . . . . 13 (.r𝑈) = (.r𝑈)
3 evlselv.u . . . . . . . . . . . . . . . 16 𝑈 = ((𝐼𝐽) mPoly 𝑅)
4 evlselv.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
5 difssd 4084 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐼𝐽) ⊆ 𝐼)
64, 5ssexd 5260 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼𝐽) ∈ V)
7 evlselv.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ CRing)
83, 6, 7mplcrngd 42588 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ CRing)
98crngringd 20164 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ Ring)
109ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring)
11 evlselv.t . . . . . . . . . . . . . . . 16 𝑇 = (𝐽 mPoly 𝑈)
12 eqid 2731 . . . . . . . . . . . . . . . 16 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2731 . . . . . . . . . . . . . . . 16 {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
14 evlselv.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝐼 mPoly 𝑅)
15 evlselv.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑃)
16 evlselv.j . . . . . . . . . . . . . . . . 17 (𝜑𝐽𝐼)
17 evlselv.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹𝐵)
1814, 15, 3, 11, 12, 7, 16, 17selvcl 42624 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇))
1911, 1, 12, 13, 18mplelf 21935 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
2120ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈))
22 eqid 2731 . . . . . . . . . . . . . 14 (mulGrp‘𝑈) = (mulGrp‘𝑈)
23 eqid 2731 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑈)) = (.g‘(mulGrp‘𝑈))
244, 16ssexd 5260 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ V)
2524ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
268ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing)
27 fvexd 6837 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝑈) ∈ V)
28 evlselv.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (Base‘𝑅)
2928fvexi 6836 . . . . . . . . . . . . . . . . . 18 𝐾 ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ V)
31 evlselv.l . . . . . . . . . . . . . . . . . 18 𝐿 = (algSc‘𝑈)
327crngringd 20164 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
333, 1, 28, 31, 6, 32mplasclf 22000 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:𝐾⟶(Base‘𝑈))
3427, 30, 33elmapdd 8765 . . . . . . . . . . . . . . . 16 (𝜑𝐿 ∈ ((Base‘𝑈) ↑m 𝐾))
35 evlselv.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (𝐾m 𝐼))
3635, 16elmapssresd 42282 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐽) ∈ (𝐾m 𝐽))
3734, 36mapcod 42284 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
3837ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
4013, 1, 22, 23, 25, 26, 38, 39evlsvvvallem 42602 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))) ∈ (Base‘𝑈))
411, 2, 10, 21, 40ringcld 20178 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) ∈ (Base‘𝑈))
42 eqidd 2732 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))
43 eqidd 2732 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)))
44 fveq1 6821 . . . . . . . . . . . 12 (𝑢 = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) → (𝑢𝑐) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐))
4541, 42, 43, 44fmptco 7062 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐)))
4633ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐿:𝐾⟶(Base‘𝑈))
47 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 28mgpbas 20063 . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘(mulGrp‘𝑅))
49 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
5047ringmgp 20157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
5132, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5251ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (mulGrp‘𝑅) ∈ Mnd)
5313psrbagf 21855 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑒:𝐽⟶ℕ0)
5453adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒:𝐽⟶ℕ0)
5554ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝑒𝑗) ∈ ℕ0)
56 elmapi 8773 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
5735, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴:𝐼𝐾)
5857, 16fssresd 6690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐴𝐽):𝐽𝐾)
5958ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐴𝐽):𝐽𝐾)
6059ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
6148, 49, 52, 55, 60mulgnn0cld 19008 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ 𝐾)
6246, 61cofmpt 7065 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
633mplassa 21959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐼𝐽) ∈ V ∧ 𝑅 ∈ CRing) → 𝑈 ∈ AssAlg)
646, 7, 63syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑈 ∈ AssAlg)
65 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑈) = (Scalar‘𝑈)
6631, 65asclrhm 21827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑈 ∈ AssAlg → 𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈))
6764, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈))
683, 6, 7mplsca 21950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 = (Scalar‘𝑈))
6968eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (Scalar‘𝑈) = 𝑅)
7069oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((Scalar‘𝑈) RingHom 𝑈) = (𝑅 RingHom 𝑈))
7167, 70eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ (𝑅 RingHom 𝑈))
7247, 22rhmmhm 20397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ (𝑅 RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7473ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7548, 49, 23mhmmulg 19028 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)) ∧ (𝑒𝑗) ∈ ℕ0 ∧ ((𝐴𝐽)‘𝑗) ∈ 𝐾) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
7674, 55, 60, 75syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
7758ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐴𝐽):𝐽𝐾)
78 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝑗𝐽)
7977, 78fvco3d 6922 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐿 ∘ (𝐴𝐽))‘𝑗) = (𝐿‘((𝐴𝐽)‘𝑗)))
8079oveq2d 7362 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
8176, 80eqtr4d 2769 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))
8281mpteq2dva 5182 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))
8362, 82eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))
8483oveq2d 7362 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))
85 eqid 2731 . . . . . . . . . . . . . . . . . 18 (Base‘(mulGrp‘(Scalar‘𝑈))) = (Base‘(mulGrp‘(Scalar‘𝑈)))
86 eqid 2731 . . . . . . . . . . . . . . . . . 18 (0g‘(mulGrp‘(Scalar‘𝑈))) = (0g‘(mulGrp‘(Scalar‘𝑈)))
8768, 7eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Scalar‘𝑈) ∈ CRing)
88 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘(Scalar‘𝑈))
8988crngmgp 20159 . . . . . . . . . . . . . . . . . . . 20 ((Scalar‘𝑈) ∈ CRing → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9087, 89syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9190ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9222ringmgp 20157 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ∈ Ring → (mulGrp‘𝑈) ∈ Mnd)
939, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘𝑈) ∈ Mnd)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘𝑈) ∈ Mnd)
9588, 22rhmmhm 20397 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9667, 95syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9796ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9868fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑈)))
9928, 98eqtrid 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 = (Base‘(Scalar‘𝑈)))
10099ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝐾 = (Base‘(Scalar‘𝑈)))
10161, 100eleqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ (Base‘(Scalar‘𝑈)))
102 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
10388, 102mgpbas 20063 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Scalar‘𝑈)) = (Base‘(mulGrp‘(Scalar‘𝑈)))
104101, 103eleqtrdi 2841 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ (Base‘(mulGrp‘(Scalar‘𝑈))))
105104fmpttd 7048 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽⟶(Base‘(mulGrp‘(Scalar‘𝑈))))
10654feqmptd 6890 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 = (𝑗𝐽 ↦ (𝑒𝑗)))
10713psrbagfsupp 21856 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑒 finSupp 0)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 finSupp 0)
109106, 108eqbrtrrd 5113 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (𝑒𝑗)) finSupp 0)
110 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
11148, 110, 49mulg0 18987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐾 → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
112111adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑘𝐾) → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
113 fvexd 6837 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
114109, 112, 55, 60, 113fsuppssov1 9268 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘𝑅)))
115 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
11647, 115ringidval 20101 . . . . . . . . . . . . . . . . . . . 20 (1r𝑅) = (0g‘(mulGrp‘𝑅))
117114, 116breqtrrdi 5131 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (1r𝑅))
11868fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑈)))
119 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (1r‘(Scalar‘𝑈)) = (1r‘(Scalar‘𝑈))
12088, 119ringidval 20101 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(Scalar‘𝑈)) = (0g‘(mulGrp‘(Scalar‘𝑈)))
121118, 120eqtrdi 2782 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘(Scalar‘𝑈))))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (1r𝑅) = (0g‘(mulGrp‘(Scalar‘𝑈))))
123117, 122breqtrd 5115 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘(Scalar‘𝑈))))
12485, 86, 91, 94, 25, 97, 105, 123gsummhm 19850 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
12584, 124eqtr3d 2768 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
126125oveq2d 7362 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))
12764ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ AssAlg)
128101fmpttd 7048 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽⟶(Base‘(Scalar‘𝑈)))
129123, 120breqtrrdi 5131 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (1r‘(Scalar‘𝑈)))
130103, 120, 91, 25, 128, 129gsumcl 19827 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈)))
131 eqid 2731 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑈) = ( ·𝑠𝑈)
13231, 65, 102, 1, 2, 131asclmul2 21824 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ AssAlg ∧ ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈)) ∧ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈)) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
133127, 130, 21, 132syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
134126, 133eqtrd 2766 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
135134fveq1d 6824 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐) = ((((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐))
136 eqid 2731 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
137 eqid 2731 . . . . . . . . . . . . . 14 {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
13899ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐾 = (Base‘(Scalar‘𝑈)))
139130, 138eleqtrrd 2834 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
140 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
1413, 131, 28, 1, 136, 137, 139, 21, 140mplvscaval 21953 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
142135, 141eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
143142mpteq2dva 5182 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐)) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))))
14445, 143eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))))
145144oveq2d 7362 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))))
14669fveq2d 6826 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅))
147146ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅))
148147oveq1d 7361 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
149148oveq1d 7361 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
1507ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
151148, 139eqeltrrd 2832 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
15219ffvelcdmda 7017 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈))
1533, 28, 1, 137, 152mplelf 21935 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
154153ffvelcdmda 7017 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾)
155154an32s 652 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾)
15628, 136, 150, 151, 155crngcomd 20173 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
157149, 156eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
158157mpteq2dva 5182 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))
159158oveq2d 7362 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))))
160145, 159eqtrd 2766 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))))
161160oveq1d 7361 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
162 eqid 2731 . . . . . . . . . 10 (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))
163 fveq1 6821 . . . . . . . . . 10 (𝑢 = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) → (𝑢𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
164 eqid 2731 . . . . . . . . . . . . 13 (𝐽 eval 𝑈) = (𝐽 eval 𝑈)
165164, 11, 12, 13, 1, 22, 23, 2, 24, 8, 18, 37evlvvval 42614 . . . . . . . . . . . 12 (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))
166164, 11, 12, 1, 24, 8, 18, 37evlcl 42613 . . . . . . . . . . . 12 (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) ∈ (Base‘𝑈))
167165, 166eqeltrrd 2832 . . . . . . . . . . 11 (𝜑 → (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) ∈ (Base‘𝑈))
168167adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) ∈ (Base‘𝑈))
169 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐) ∈ V)
170162, 163, 168, 169fvmptd3 6952 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
171 eqid 2731 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
1729ringcmnd 20202 . . . . . . . . . . 11 (𝜑𝑈 ∈ CMnd)
173172adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CMnd)
1747crnggrpd 20165 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
175174grpmndd 18859 . . . . . . . . . . 11 (𝜑𝑅 ∈ Mnd)
176175adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
177 ovex 7379 . . . . . . . . . . . 12 (ℕ0m 𝐽) ∈ V
178177rabex 5275 . . . . . . . . . . 11 {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V)
1806adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐼𝐽) ∈ V)
181174adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
182 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
1833, 1, 137, 162, 180, 181, 182mplmapghm 42597 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 GrpHom 𝑅))
184 ghmmhm 19138 . . . . . . . . . . 11 ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 GrpHom 𝑅) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 MndHom 𝑅))
185183, 184syl 17 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 MndHom 𝑅))
18641fmpttd 7048 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
18724adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
1888adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing)
18918adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇))
19037adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
19113, 11, 12, 1, 22, 23, 2, 187, 188, 189, 190evlvvvallem 42615 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))) finSupp (0g𝑈))
1921, 171, 173, 176, 179, 185, 186, 191gsummhm 19850 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))))
193165adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))
194193fveq1d 6824 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
195170, 192, 1943eqtr4rd 2777 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐) = (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))))
196195oveq1d 7361 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
197 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
19832adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
19947crngmgp 20159 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2007, 199syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
201200adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (mulGrp‘𝑅) ∈ CMnd)
20251ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (mulGrp‘𝑅) ∈ Mnd)
203137psrbagf 21855 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑐:(𝐼𝐽)⟶ℕ0)
204203adantl 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐:(𝐼𝐽)⟶ℕ0)
205204ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (𝑐𝑘) ∈ ℕ0)
20657, 5fssresd 6690 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ↾ (𝐼𝐽)):(𝐼𝐽)⟶𝐾)
207206adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴 ↾ (𝐼𝐽)):(𝐼𝐽)⟶𝐾)
208207ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
20948, 49, 202, 205, 208mulgnn0cld 19008 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) ∈ 𝐾)
210209fmpttd 7048 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))):(𝐼𝐽)⟶𝐾)
211204feqmptd 6890 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 = (𝑘 ∈ (𝐼𝐽) ↦ (𝑐𝑘)))
212137psrbagfsupp 21856 . . . . . . . . . . . 12 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑐 finSupp 0)
213212adantl 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 finSupp 0)
214211, 213eqbrtrrd 5113 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (𝑐𝑘)) finSupp 0)
21548, 110, 49mulg0 18987 . . . . . . . . . . 11 (𝑣𝐾 → (0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅)))
216215adantl 481 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → (0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅)))
217 fvexd 6837 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (𝑐𝑘) ∈ V)
218 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
219214, 216, 217, 208, 218fsuppssov1 9268 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) finSupp (0g‘(mulGrp‘𝑅)))
22048, 110, 201, 180, 210, 219gsumcl 19827 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
22132ad2antrr 726 . . . . . . . . 9 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
22228, 136, 221, 155, 151ringcld 20178 . . . . . . . 8 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
223178mptex 7157 . . . . . . . . . . 11 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V
224223a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V)
225 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
226 funmpt 6519 . . . . . . . . . . 11 Fun (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))
227226a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
22811, 12, 171, 18mplelsfi 21932 . . . . . . . . . . 11 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g𝑈))
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g𝑈))
230 ssidd 3953 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))
231 fvexd 6837 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑈) ∈ V)
23220, 230, 179, 231suppssr 8125 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) = (0g𝑈))
233232fveq1d 6824 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = ((0g𝑈)‘𝑐))
2343, 137, 197, 171, 6, 174mpl0 21943 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝑈) = ({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
235234adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑈) = ({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
236235fveq1d 6824 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g𝑈)‘𝑐) = (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐))
237 fvex 6835 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
238237fvconst2 7138 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐) = (0g𝑅))
239238adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐) = (0g𝑅))
240236, 239eqtrd 2766 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g𝑈)‘𝑐) = (0g𝑅))
241240adantr 480 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → ((0g𝑈)‘𝑐) = (0g𝑅))
242233, 241eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = (0g𝑅))
243242, 179suppss2 8130 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) supp (0g𝑅)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))
244224, 225, 227, 229, 243fsuppsssuppgd 9266 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) finSupp (0g𝑅))
24532ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → 𝑅 ∈ Ring)
246 simpr 484 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → 𝑣𝐾)
24728, 136, 197, 245, 246ringlzd 20213 . . . . . . . . 9 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → ((0g𝑅)(.r𝑅)𝑣) = (0g𝑅))
248244, 247, 155, 151, 225fsuppssov1 9268 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) finSupp (0g𝑅))
24928, 197, 136, 198, 179, 220, 222, 248gsummulc1 20234 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
250161, 196, 2493eqtr4d 2776 . . . . . 6 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
251 fveq2 6822 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))
252251adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))
253 simpl 482 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → 𝑏 = 𝑐)
254252, 253fveq12d 6829 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))
255 fveq1 6821 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → (𝑎𝑗) = (𝑒𝑗))
256255adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑎𝑗) = (𝑒𝑗))
257256oveq1d 7361 . . . . . . . . . . . . . 14 ((𝑏 = 𝑐𝑎 = 𝑒) → ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
258257mpteq2dv 5183 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
259258oveq2d 7362 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
260254, 259oveq12d 7364 . . . . . . . . . . 11 ((𝑏 = 𝑐𝑎 = 𝑒) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
261 fveq1 6821 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑏𝑘) = (𝑐𝑘))
262261adantr 480 . . . . . . . . . . . . . 14 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑏𝑘) = (𝑐𝑘))
263262oveq1d 7361 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
264263mpteq2dv 5183 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
265264oveq2d 7362 . . . . . . . . . . 11 ((𝑏 = 𝑐𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
266260, 265oveq12d 7364 . . . . . . . . . 10 ((𝑏 = 𝑐𝑎 = 𝑒) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
267 eqid 2731 . . . . . . . . . 10 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
268 ovex 7379 . . . . . . . . . 10 (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ V
269266, 267, 268ovmpoa 7501 . . . . . . . . 9 ((𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
270269adantll 714 . . . . . . . 8 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
271270mpteq2dva 5182 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒)) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
272271oveq2d 7362 . . . . . 6 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
273250, 272eqtr4d 2769 . . . . 5 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))
274273mpteq2dva 5182 . . . 4 (𝜑 → (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒)))))
275274oveq2d 7362 . . 3 (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
27632ringcmnd 20202 . . . . 5 (𝜑𝑅 ∈ CMnd)
277 ovex 7379 . . . . . . 7 (ℕ0m 𝐼) ∈ V
278277rabex 5275 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
279278a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
28032adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
28119adantr 480 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
282 eqid 2731 . . . . . . . . . . . 12 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2834adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
28416adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐽𝐼)
285 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
286282, 13, 283, 284, 285psrbagres 42587 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽) ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
287281, 286ffvelcdmd 7018 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)) ∈ (Base‘𝑈))
2883, 28, 1, 137, 287mplelf 21935 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
289 difssd 4084 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐼𝐽) ⊆ 𝐼)
290282, 137, 283, 289, 285psrbagres 42587 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)) ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
291288, 290ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) ∈ 𝐾)
292200adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (mulGrp‘𝑅) ∈ CMnd)
29324adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
29451ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (mulGrp‘𝑅) ∈ Mnd)
295282psrbagf 21855 . . . . . . . . . . . . . 14 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
296295adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
297296, 284fssresd 6690 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽):𝐽⟶ℕ0)
298297ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝐽)‘𝑗) ∈ ℕ0)
29958ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝜑𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
300299adantlr 715 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
30148, 49, 294, 298, 300mulgnn0cld 19008 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ 𝐾)
302301fmpttd 7048 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽𝐾)
30324mptexd 7158 . . . . . . . . . . 11 (𝜑 → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) ∈ V)
304303adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) ∈ V)
305 fvexd 6837 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
306 funmpt 6519 . . . . . . . . . . 11 Fun (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
307306a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → Fun (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
308282psrbagfsupp 21856 . . . . . . . . . . . 12 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑 finSupp 0)
309308adantl 481 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 finSupp 0)
310 0zd 12480 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 0 ∈ ℤ)
311309, 310fsuppres 9277 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽) finSupp 0)
312 ssidd 3953 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝐽) supp 0) ⊆ ((𝑑𝐽) supp 0))
313297, 312, 293, 310suppssr 8125 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → ((𝑑𝐽)‘𝑗) = 0)
314313oveq1d 7361 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
315 eldifi 4078 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0)) → 𝑗𝐽)
31648, 110, 49mulg0 18987 . . . . . . . . . . . . . 14 (((𝐴𝐽)‘𝑗) ∈ 𝐾 → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
317300, 316syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
318315, 317sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
319314, 318eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
320319, 293suppss2 8130 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) supp (0g‘(mulGrp‘𝑅))) ⊆ ((𝑑𝐽) supp 0))
321304, 305, 307, 311, 320fsuppsssuppgd 9266 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘𝑅)))
32248, 110, 292, 293, 302, 321gsumcl 19827 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
32328, 136, 280, 291, 322ringcld 20178 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
3246adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐼𝐽) ∈ V)
32551ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (mulGrp‘𝑅) ∈ Mnd)
326296, 289fssresd 6690 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)):(𝐼𝐽)⟶ℕ0)
327326ffvelcdmda 7017 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) ∈ ℕ0)
328206ffvelcdmda 7017 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
329328adantlr 715 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
33048, 49, 325, 327, 329mulgnn0cld 19008 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) ∈ 𝐾)
331330fmpttd 7048 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))):(𝐼𝐽)⟶𝐾)
332324mptexd 7158 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) ∈ V)
333 funmpt 6519 . . . . . . . . . 10 Fun (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
334333a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → Fun (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
335309, 310fsuppres 9277 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)) finSupp 0)
336 ssidd 3953 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑 ↾ (𝐼𝐽)) supp 0) ⊆ ((𝑑 ↾ (𝐼𝐽)) supp 0))
337326, 336, 324, 310suppssr 8125 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = 0)
338337oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
339 eldifi 4078 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0)) → 𝑘 ∈ (𝐼𝐽))
340339, 329sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
34148, 110, 49mulg0 18987 . . . . . . . . . . . 12 (((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾 → (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
342340, 341syl 17 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
343338, 342eqtrd 2766 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
344343, 324suppss2 8130 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) supp (0g‘(mulGrp‘𝑅))) ⊆ ((𝑑 ↾ (𝐼𝐽)) supp 0))
345332, 305, 334, 335, 344fsuppsssuppgd 9266 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) finSupp (0g‘(mulGrp‘𝑅)))
34648, 110, 292, 324, 331, 345gsumcl 19827 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
34728, 136, 280, 323, 346ringcld 20178 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
348347fmpttd 7048 . . . . 5 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
3497adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
35017adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
351282, 14, 15, 349, 284, 350, 285selvvvval 42626 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) = (𝐹𝑑))
352351mpteq2dva 5182 . . . . . . . 8 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)))
353 eqid 2731 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
35414, 353, 15, 282, 17mplelf 21935 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
355354feqmptd 6890 . . . . . . . . 9 (𝜑𝐹 = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)))
35614, 15, 197, 17mplelsfi 21932 . . . . . . . . 9 (𝜑𝐹 finSupp (0g𝑅))
357355, 356eqbrtrrd 5113 . . . . . . . 8 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)) finSupp (0g𝑅))
358352, 357eqbrtrd 5111 . . . . . . 7 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))) finSupp (0g𝑅))
35932adantr 480 . . . . . . . 8 ((𝜑𝑣𝐾) → 𝑅 ∈ Ring)
360 simpr 484 . . . . . . . 8 ((𝜑𝑣𝐾) → 𝑣𝐾)
36128, 136, 197, 359, 360ringlzd 20213 . . . . . . 7 ((𝜑𝑣𝐾) → ((0g𝑅)(.r𝑅)𝑣) = (0g𝑅))
362 fvexd 6837 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) ∈ V)
363 fvexd 6837 . . . . . . 7 (𝜑 → (0g𝑅) ∈ V)
364358, 361, 362, 322, 363fsuppssov1 9268 . . . . . 6 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) finSupp (0g𝑅))
365 ovexd 7381 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ V)
366364, 361, 365, 346, 363fsuppssov1 9268 . . . . 5 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) finSupp (0g𝑅))
367 eqid 2731 . . . . . 6 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))
368282, 13, 137, 367, 4, 16evlselvlem 42627 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
36928, 197, 276, 279, 348, 366, 368gsumf1o 19828 . . . 4 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))))
370137psrbagf 21855 . . . . . . . . . 10 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏:(𝐼𝐽)⟶ℕ0)
371370ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏:(𝐼𝐽)⟶ℕ0)
37213psrbagf 21855 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑎:𝐽⟶ℕ0)
373372ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎:𝐽⟶ℕ0)
374 disjdifr 4420 . . . . . . . . . 10 ((𝐼𝐽) ∩ 𝐽) = ∅
375374a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝐼𝐽) ∩ 𝐽) = ∅)
376371, 373, 375fun2d 6687 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
377 undifr 4430 . . . . . . . . . . 11 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
37816, 377sylib 218 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
379378adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
380379feq2d 6635 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑏𝑎):𝐼⟶ℕ0))
381376, 380mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎):𝐼⟶ℕ0)
382 vex 3440 . . . . . . . . . . 11 𝑏 ∈ V
383 vex 3440 . . . . . . . . . . 11 𝑎 ∈ V
384382, 383unex 7677 . . . . . . . . . 10 (𝑏𝑎) ∈ V
385384a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) ∈ V)
386 0zd 12480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 0 ∈ ℤ)
387381ffund 6655 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → Fun (𝑏𝑎))
388137psrbagfsupp 21856 . . . . . . . . . . 11 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
389388ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 finSupp 0)
39013psrbagfsupp 21856 . . . . . . . . . . 11 (𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑎 finSupp 0)
391390ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 finSupp 0)
392389, 391fsuppun 9271 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) supp 0) ∈ Fin)
393385, 386, 387, 392isfsuppd 9250 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) finSupp 0)
394 fcdmnn0fsuppg 12441 . . . . . . . . 9 (((𝑏𝑎) ∈ V ∧ (𝑏𝑎):𝐼⟶ℕ0) → ((𝑏𝑎) finSupp 0 ↔ ((𝑏𝑎) “ ℕ) ∈ Fin))
395385, 381, 394syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) finSupp 0 ↔ ((𝑏𝑎) “ ℕ) ∈ Fin))
396393, 395mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) “ ℕ) ∈ Fin)
3974adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝐼𝑉)
398282psrbag 21854 . . . . . . . 8 (𝐼𝑉 → ((𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ ((𝑏𝑎):𝐼⟶ℕ0 ∧ ((𝑏𝑎) “ ℕ) ∈ Fin)))
399397, 398syl 17 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ ((𝑏𝑎):𝐼⟶ℕ0 ∧ ((𝑏𝑎) “ ℕ) ∈ Fin)))
400381, 396, 399mpbir2and 713 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
401 eqidd 2732 . . . . . 6 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))
402 eqidd 2732 . . . . . 6 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
403 reseq1 5921 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → (𝑑𝐽) = ((𝑏𝑎) ↾ 𝐽))
404403fveq2d 6826 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽)))
405 reseq1 5921 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (𝑑 ↾ (𝐼𝐽)) = ((𝑏𝑎) ↾ (𝐼𝐽)))
406404, 405fveq12d 6829 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽))))
407403fveq1d 6824 . . . . . . . . . . . . 13 (𝑑 = (𝑏𝑎) → ((𝑑𝐽)‘𝑗) = (((𝑏𝑎) ↾ 𝐽)‘𝑗))
408407oveq1d 7361 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
409408mpteq2dv 5183 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
410409oveq2d 7362 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
411406, 410oveq12d 7364 . . . . . . . . 9 (𝑑 = (𝑏𝑎) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
412405fveq1d 6824 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = (((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘))
413412oveq1d 7361 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
414413mpteq2dv 5183 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
415414oveq2d 7362 . . . . . . . . 9 (𝑑 = (𝑏𝑎) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
416411, 415oveq12d 7364 . . . . . . . 8 (𝑑 = (𝑏𝑎) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
417384, 416csbie 3880 . . . . . . 7 (𝑏𝑎) / 𝑑(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
418370ffnd 6652 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏 Fn (𝐼𝐽))
419418ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 Fn (𝐼𝐽))
420373ffnd 6652 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 Fn 𝐽)
421 fnunres2 6594 . . . . . . . . . . . 12 ((𝑏 Fn (𝐼𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑏𝑎) ↾ 𝐽) = 𝑎)
422419, 420, 375, 421syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ↾ 𝐽) = 𝑎)
423422fveq2d 6826 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎))
424 fnunres1 6593 . . . . . . . . . . 11 ((𝑏 Fn (𝐼𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑏𝑎) ↾ (𝐼𝐽)) = 𝑏)
425419, 420, 375, 424syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ↾ (𝐼𝐽)) = 𝑏)
426423, 425fveq12d 6829 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏))
427422fveq1d 6824 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((𝑏𝑎) ↾ 𝐽)‘𝑗) = (𝑎𝑗))
428427oveq1d 7361 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
429428mpteq2dv 5183 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
430429oveq2d 7362 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
431426, 430oveq12d 7364 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
432425fveq1d 6824 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘) = (𝑏𝑘))
433432oveq1d 7361 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
434433mpteq2dv 5183 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
435434oveq2d 7362 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
436431, 435oveq12d 7364 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
437417, 436eqtrid 2778 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) / 𝑑(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
438400, 401, 402, 437fmpocos 42275 . . . . 5 (𝜑 → ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
439438oveq2d 7362 . . . 4 (𝜑 → (𝑅 Σg ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))) = (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
440 ovex 7379 . . . . . . 7 (ℕ0m (𝐼𝐽)) ∈ V
441440rabex 5275 . . . . . 6 {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
442441a1i 11 . . . . 5 (𝜑 → {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
443178a1i 11 . . . . 5 (𝜑 → {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V)
44432adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ Ring)
44519ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) ∈ (Base‘𝑈))
4463, 28, 1, 137, 445mplelf 21935 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
447446ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
448447an32s 652 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
449448anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
45024adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝐽 ∈ V)
4517adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ CRing)
45236adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐴𝐽) ∈ (𝐾m 𝐽))
453 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
45413, 28, 47, 49, 450, 451, 452, 453evlsvvvallem 42602 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
45528, 136, 444, 449, 454ringcld 20178 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
4566adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐼𝐽) ∈ V)
45735, 5elmapssresd 42282 . . . . . . . . . 10 (𝜑 → (𝐴 ↾ (𝐼𝐽)) ∈ (𝐾m (𝐼𝐽)))
458457adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐴 ↾ (𝐼𝐽)) ∈ (𝐾m (𝐼𝐽)))
459 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
460137, 28, 47, 49, 456, 451, 458, 459evlsvvvallem 42602 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
46128, 136, 444, 455, 460ringcld 20178 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
462461ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
463267fmpo 8000 . . . . . 6 (∀𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾 ↔ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})⟶𝐾)
464462, 463sylib 218 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})⟶𝐾)
465 f1of1 6762 . . . . . . . 8 ((𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
466368, 465syl 17 . . . . . . 7 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
467278mptex 7157 . . . . . . . 8 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∈ V
468467a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∈ V)
469366, 466, 363, 468fsuppco 9286 . . . . . 6 (𝜑 → ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))) finSupp (0g𝑅))
470438, 469eqbrtrrd 5113 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) finSupp (0g𝑅))
47128, 197, 276, 442, 443, 464, 470gsumxp 19888 . . . 4 (𝜑 → (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
472369, 439, 4713eqtrd 2770 . . 3 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
47328, 136, 280, 291, 322, 346ringassd 20175 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)(((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
47447, 136mgpplusg 20062 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
47551ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (mulGrp‘𝑅) ∈ Mnd)
476296ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
47757adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴:𝐼𝐾)
478477ffvelcdmda 7017 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
47948, 49, 475, 476, 478mulgnn0cld 19008 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) ∈ 𝐾)
480479fmpttd 7048 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))):𝐼𝐾)
481296feqmptd 6890 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 = (𝑖𝐼 ↦ (𝑑𝑖)))
482481, 309eqbrtrrd 5113 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ (𝑑𝑖)) finSupp 0)
483111adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘𝐾) → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
484482, 483, 476, 478, 305fsuppssov1 9268 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) finSupp (0g‘(mulGrp‘𝑅)))
485 disjdif 4419 . . . . . . . . . 10 (𝐽 ∩ (𝐼𝐽)) = ∅
486485a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐽 ∩ (𝐼𝐽)) = ∅)
487 undif 4429 . . . . . . . . . . . 12 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
48816, 487sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
489488eqcomd 2737 . . . . . . . . . 10 (𝜑𝐼 = (𝐽 ∪ (𝐼𝐽)))
490489adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 = (𝐽 ∪ (𝐼𝐽)))
49148, 110, 474, 292, 283, 480, 484, 486, 490gsumsplit 19840 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))) = (((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽))(.r𝑅)((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)))))
492284resmptd 5988 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽) = (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))
493 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑑𝑖) = (𝑑𝑗))
494 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
495493, 494oveq12d 7364 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) = ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
496495cbvmptv 5193 . . . . . . . . . . . 12 (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑗𝐽 ↦ ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
497 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝑗𝐽)
498497fvresd 6842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝐽)‘𝑗) = (𝑑𝑗))
499497fvresd 6842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) = (𝐴𝑗))
500498, 499oveq12d 7364 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
501500eqcomd 2737 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)) = (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
502501mpteq2dva 5182 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗))) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
503496, 502eqtrid 2778 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
504492, 503eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
505504oveq2d 7362 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽)) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
506289resmptd 5988 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)) = (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))
507 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
508 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
509507, 508oveq12d 7364 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) = ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
510509cbvmptv 5193 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
511 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → 𝑘 ∈ (𝐼𝐽))
512511fvresd 6842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = (𝑑𝑘))
513511fvresd 6842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) = (𝐴𝑘))
514512, 513oveq12d 7364 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
515514eqcomd 2737 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)) = (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
516515mpteq2dva 5182 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
517510, 516eqtrid 2778 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
518506, 517eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
519518oveq2d 7362 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
520505, 519oveq12d 7364 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽))(.r𝑅)((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)))) = (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
521491, 520eqtr2d 2767 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))))
522351, 521oveq12d 7364 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)(((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))
523473, 522eqtrd 2766 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))
524523mpteq2dva 5182 . . . 4 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))))))
525524oveq2d 7362 . . 3 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
526275, 472, 5253eqtr2d 2772 . 2 (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
527 eqid 2731 . . 3 ((𝐼𝐽) eval 𝑅) = ((𝐼𝐽) eval 𝑅)
528527, 3, 1, 137, 28, 47, 49, 136, 6, 7, 166, 457evlvvval 42614 . 2 (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
529 eqid 2731 . . 3 (𝐼 eval 𝑅) = (𝐼 eval 𝑅)
530529, 14, 15, 282, 28, 47, 49, 136, 4, 7, 17, 35evlvvval 42614 . 2 (𝜑 → (((𝐼 eval 𝑅)‘𝐹)‘𝐴) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
531526, 528, 5303eqtr4d 2776 1 (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  csb 3845  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  cres 5616  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  cn 12125  0cn0 12381  cz 12468  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642   MndHom cmhm 18689  Grpcgrp 18846  .gcmg 18980   GrpHom cghm 19124  CMndccmn 19692  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  AssAlgcasa 21787  algSccascl 21789   mPoly cmpl 21843   eval cevl 22008   selectVars cslv 22043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-evls 22009  df-evl 22010  df-selv 22047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator