Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselv Structured version   Visualization version   GIF version

Theorem evlselv 42575
Description: Evaluating a selection of variable assignments, then evaluating the rest of the variables, is the same as evaluating with all assignments. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselv.p 𝑃 = (𝐼 mPoly 𝑅)
evlselv.k 𝐾 = (Base‘𝑅)
evlselv.b 𝐵 = (Base‘𝑃)
evlselv.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
evlselv.t 𝑇 = (𝐽 mPoly 𝑈)
evlselv.l 𝐿 = (algSc‘𝑈)
evlselv.i (𝜑𝐼𝑉)
evlselv.r (𝜑𝑅 ∈ CRing)
evlselv.j (𝜑𝐽𝐼)
evlselv.f (𝜑𝐹𝐵)
evlselv.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlselv (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴))

Proof of Theorem evlselv
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑖 𝑗 𝑘 𝑢 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2729 . . . . . . . . . . . . 13 (.r𝑈) = (.r𝑈)
3 evlselv.u . . . . . . . . . . . . . . . 16 𝑈 = ((𝐼𝐽) mPoly 𝑅)
4 evlselv.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
5 difssd 4100 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐼𝐽) ⊆ 𝐼)
64, 5ssexd 5279 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼𝐽) ∈ V)
7 evlselv.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ CRing)
83, 6, 7mplcrngd 42535 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ CRing)
98crngringd 20155 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ Ring)
109ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ Ring)
11 evlselv.t . . . . . . . . . . . . . . . 16 𝑇 = (𝐽 mPoly 𝑈)
12 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2729 . . . . . . . . . . . . . . . 16 {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
14 evlselv.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝐼 mPoly 𝑅)
15 evlselv.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑃)
16 evlselv.j . . . . . . . . . . . . . . . . 17 (𝜑𝐽𝐼)
17 evlselv.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹𝐵)
1814, 15, 3, 11, 12, 7, 16, 17selvcl 42571 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇))
1911, 1, 12, 13, 18mplelf 21907 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
2120ffvelcdmda 7056 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈))
22 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝑈) = (mulGrp‘𝑈)
23 eqid 2729 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑈)) = (.g‘(mulGrp‘𝑈))
244, 16ssexd 5279 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ V)
2524ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
268ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing)
27 fvexd 6873 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝑈) ∈ V)
28 evlselv.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (Base‘𝑅)
2928fvexi 6872 . . . . . . . . . . . . . . . . . 18 𝐾 ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ V)
31 evlselv.l . . . . . . . . . . . . . . . . . 18 𝐿 = (algSc‘𝑈)
327crngringd 20155 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
333, 1, 28, 31, 6, 32mplasclf 21972 . . . . . . . . . . . . . . . . 17 (𝜑𝐿:𝐾⟶(Base‘𝑈))
3427, 30, 33elmapdd 8814 . . . . . . . . . . . . . . . 16 (𝜑𝐿 ∈ ((Base‘𝑈) ↑m 𝐾))
35 evlselv.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (𝐾m 𝐼))
3635, 16elmapssresd 42229 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐽) ∈ (𝐾m 𝐽))
3734, 36mapcod 42231 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
3837ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
4013, 1, 22, 23, 25, 26, 38, 39evlsvvvallem 42549 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))) ∈ (Base‘𝑈))
411, 2, 10, 21, 40ringcld 20169 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) ∈ (Base‘𝑈))
42 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))
43 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)))
44 fveq1 6857 . . . . . . . . . . . 12 (𝑢 = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) → (𝑢𝑐) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐))
4541, 42, 43, 44fmptco 7101 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐)))
4633ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐿:𝐾⟶(Base‘𝑈))
47 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4847, 28mgpbas 20054 . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘(mulGrp‘𝑅))
49 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
5047ringmgp 20148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
5132, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5251ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (mulGrp‘𝑅) ∈ Mnd)
5313psrbagf 21827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑒:𝐽⟶ℕ0)
5453adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒:𝐽⟶ℕ0)
5554ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝑒𝑗) ∈ ℕ0)
56 elmapi 8822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (𝐾m 𝐼) → 𝐴:𝐼𝐾)
5735, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴:𝐼𝐾)
5857, 16fssresd 6727 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐴𝐽):𝐽𝐾)
5958ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐴𝐽):𝐽𝐾)
6059ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
6148, 49, 52, 55, 60mulgnn0cld 19027 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ 𝐾)
6246, 61cofmpt 7104 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
633mplassa 21931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐼𝐽) ∈ V ∧ 𝑅 ∈ CRing) → 𝑈 ∈ AssAlg)
646, 7, 63syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑈 ∈ AssAlg)
65 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Scalar‘𝑈) = (Scalar‘𝑈)
6631, 65asclrhm 21799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑈 ∈ AssAlg → 𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈))
6764, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈))
683, 6, 7mplsca 21922 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 = (Scalar‘𝑈))
6968eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (Scalar‘𝑈) = 𝑅)
7069oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((Scalar‘𝑈) RingHom 𝑈) = (𝑅 RingHom 𝑈))
7167, 70eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ (𝑅 RingHom 𝑈))
7247, 22rhmmhm 20388 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ (𝑅 RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7473ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)))
7548, 49, 23mhmmulg 19047 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑈)) ∧ (𝑒𝑗) ∈ ℕ0 ∧ ((𝐴𝐽)‘𝑗) ∈ 𝐾) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
7674, 55, 60, 75syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
7758ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐴𝐽):𝐽𝐾)
78 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝑗𝐽)
7977, 78fvco3d 6961 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐿 ∘ (𝐴𝐽))‘𝑗) = (𝐿‘((𝐴𝐽)‘𝑗)))
8079oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))(𝐿‘((𝐴𝐽)‘𝑗))))
8176, 80eqtr4d 2767 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))
8281mpteq2dva 5200 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (𝐿‘((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))
8362, 82eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))
8483oveq2d 7403 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))
85 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘(mulGrp‘(Scalar‘𝑈))) = (Base‘(mulGrp‘(Scalar‘𝑈)))
86 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0g‘(mulGrp‘(Scalar‘𝑈))) = (0g‘(mulGrp‘(Scalar‘𝑈)))
8768, 7eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Scalar‘𝑈) ∈ CRing)
88 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘(Scalar‘𝑈))
8988crngmgp 20150 . . . . . . . . . . . . . . . . . . . 20 ((Scalar‘𝑈) ∈ CRing → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9087, 89syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9190ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘(Scalar‘𝑈)) ∈ CMnd)
9222ringmgp 20148 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ∈ Ring → (mulGrp‘𝑈) ∈ Mnd)
939, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘𝑈) ∈ Mnd)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘𝑈) ∈ Mnd)
9588, 22rhmmhm 20388 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ((Scalar‘𝑈) RingHom 𝑈) → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9667, 95syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9796ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐿 ∈ ((mulGrp‘(Scalar‘𝑈)) MndHom (mulGrp‘𝑈)))
9868fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑈)))
9928, 98eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 = (Base‘(Scalar‘𝑈)))
10099ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝐾 = (Base‘(Scalar‘𝑈)))
10161, 100eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ (Base‘(Scalar‘𝑈)))
102 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
10388, 102mgpbas 20054 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Scalar‘𝑈)) = (Base‘(mulGrp‘(Scalar‘𝑈)))
104101, 103eleqtrdi 2838 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ (Base‘(mulGrp‘(Scalar‘𝑈))))
105104fmpttd 7087 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽⟶(Base‘(mulGrp‘(Scalar‘𝑈))))
10654feqmptd 6929 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 = (𝑗𝐽 ↦ (𝑒𝑗)))
10713psrbagfsupp 21828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑒 finSupp 0)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑒 finSupp 0)
109106, 108eqbrtrrd 5131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (𝑒𝑗)) finSupp 0)
110 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
11148, 110, 49mulg0 19006 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐾 → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
112111adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑘𝐾) → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
113 fvexd 6873 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
114109, 112, 55, 60, 113fsuppssov1 9335 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘𝑅)))
115 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
11647, 115ringidval 20092 . . . . . . . . . . . . . . . . . . . 20 (1r𝑅) = (0g‘(mulGrp‘𝑅))
117114, 116breqtrrdi 5149 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (1r𝑅))
11868fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑈)))
119 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (1r‘(Scalar‘𝑈)) = (1r‘(Scalar‘𝑈))
12088, 119ringidval 20092 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(Scalar‘𝑈)) = (0g‘(mulGrp‘(Scalar‘𝑈)))
121118, 120eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘(Scalar‘𝑈))))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (1r𝑅) = (0g‘(mulGrp‘(Scalar‘𝑈))))
123117, 122breqtrd 5133 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘(Scalar‘𝑈))))
12485, 86, 91, 94, 25, 97, 105, 123gsummhm 19868 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝐿 ∘ (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
12584, 124eqtr3d 2766 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))) = (𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
126125oveq2d 7403 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))
12764ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑈 ∈ AssAlg)
128101fmpttd 7087 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽⟶(Base‘(Scalar‘𝑈)))
129123, 120breqtrrdi 5149 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (1r‘(Scalar‘𝑈)))
130103, 120, 91, 25, 128, 129gsumcl 19845 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈)))
131 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑈) = ( ·𝑠𝑈)
13231, 65, 102, 1, 2, 131asclmul2 21796 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ AssAlg ∧ ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ (Base‘(Scalar‘𝑈)) ∧ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈)) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
133127, 130, 21, 132syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)(𝐿‘((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
134126, 133eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)))
135134fveq1d 6860 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐) = ((((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐))
136 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
137 eqid 2729 . . . . . . . . . . . . . 14 {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
13899ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝐾 = (Base‘(Scalar‘𝑈)))
139130, 138eleqtrrd 2831 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
140 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
1413, 131, 28, 1, 136, 137, 139, 21, 140mplvscaval 21925 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))( ·𝑠𝑈)((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
142135, 141eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐) = (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
143142mpteq2dva 5200 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))‘𝑐)) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))))
14445, 143eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))))
145144oveq2d 7403 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))))
14669fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅))
147146ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (mulGrp‘(Scalar‘𝑈)) = (mulGrp‘𝑅))
148147oveq1d 7402 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
149148oveq1d 7402 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
1507ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
151148, 139eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
15219ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) ∈ (Base‘𝑈))
1533, 28, 1, 137, 152mplelf 21907 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
154153ffvelcdmda 7056 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾)
155154an32s 652 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) ∈ 𝐾)
15628, 136, 150, 151, 155crngcomd 20164 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
157149, 156eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
158157mpteq2dva 5200 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))
159158oveq2d 7403 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((mulGrp‘(Scalar‘𝑈)) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)(((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))))
160145, 159eqtrd 2764 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))))
161160oveq1d 7402 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
162 eqid 2729 . . . . . . . . . 10 (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) = (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))
163 fveq1 6857 . . . . . . . . . 10 (𝑢 = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) → (𝑢𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
164 eqid 2729 . . . . . . . . . . . . 13 (𝐽 eval 𝑈) = (𝐽 eval 𝑈)
165164, 11, 12, 13, 1, 22, 23, 2, 24, 8, 18, 37evlvvval 42561 . . . . . . . . . . . 12 (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))
166164, 11, 12, 1, 24, 8, 18, 37evlcl 42560 . . . . . . . . . . . 12 (𝜑 → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) ∈ (Base‘𝑈))
167165, 166eqeltrrd 2829 . . . . . . . . . . 11 (𝜑 → (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) ∈ (Base‘𝑈))
168167adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))) ∈ (Base‘𝑈))
169 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐) ∈ V)
170162, 163, 168, 169fvmptd3 6991 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
171 eqid 2729 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
1729ringcmnd 20193 . . . . . . . . . . 11 (𝜑𝑈 ∈ CMnd)
173172adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CMnd)
1747crnggrpd 20156 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
175174grpmndd 18878 . . . . . . . . . . 11 (𝜑𝑅 ∈ Mnd)
176175adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Mnd)
177 ovex 7420 . . . . . . . . . . . 12 (ℕ0m 𝐽) ∈ V
178177rabex 5294 . . . . . . . . . . 11 {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V
179178a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V)
1806adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐼𝐽) ∈ V)
181174adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
182 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
1833, 1, 137, 162, 180, 181, 182mplmapghm 42544 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 GrpHom 𝑅))
184 ghmmhm 19158 . . . . . . . . . . 11 ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 GrpHom 𝑅) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 MndHom 𝑅))
185183, 184syl 17 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∈ (𝑈 MndHom 𝑅))
18641fmpttd 7087 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
18724adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
1888adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑈 ∈ CRing)
18918adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ (Base‘𝑇))
19037adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐿 ∘ (𝐴𝐽)) ∈ ((Base‘𝑈) ↑m 𝐽))
19113, 11, 12, 1, 22, 23, 2, 187, 188, 189, 190evlvvvallem 42562 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))) finSupp (0g𝑈))
1921, 171, 173, 176, 179, 185, 186, 191gsummhm 19868 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))) = ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐))‘(𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))))
193165adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))) = (𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))
194193fveq1d 6860 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐) = ((𝑈 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))‘𝑐))
195170, 192, 1943eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐) = (𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗)))))))))
196195oveq1d 7402 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝑅 Σg ((𝑢 ∈ (Base‘𝑈) ↦ (𝑢𝑐)) ∘ (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)(.r𝑈)((mulGrp‘𝑈) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑈))((𝐿 ∘ (𝐴𝐽))‘𝑗))))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
197 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
19832adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
19947crngmgp 20150 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2007, 199syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
201200adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (mulGrp‘𝑅) ∈ CMnd)
20251ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (mulGrp‘𝑅) ∈ Mnd)
203137psrbagf 21827 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑐:(𝐼𝐽)⟶ℕ0)
204203adantl 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐:(𝐼𝐽)⟶ℕ0)
205204ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (𝑐𝑘) ∈ ℕ0)
20657, 5fssresd 6727 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ↾ (𝐼𝐽)):(𝐼𝐽)⟶𝐾)
207206adantr 480 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴 ↾ (𝐼𝐽)):(𝐼𝐽)⟶𝐾)
208207ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
20948, 49, 202, 205, 208mulgnn0cld 19027 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) ∈ 𝐾)
210209fmpttd 7087 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))):(𝐼𝐽)⟶𝐾)
211204feqmptd 6929 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 = (𝑘 ∈ (𝐼𝐽) ↦ (𝑐𝑘)))
212137psrbagfsupp 21828 . . . . . . . . . . . 12 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑐 finSupp 0)
213212adantl 481 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑐 finSupp 0)
214211, 213eqbrtrrd 5131 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (𝑐𝑘)) finSupp 0)
21548, 110, 49mulg0 19006 . . . . . . . . . . 11 (𝑣𝐾 → (0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅)))
216215adantl 481 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → (0(.g‘(mulGrp‘𝑅))𝑣) = (0g‘(mulGrp‘𝑅)))
217 fvexd 6873 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (𝑐𝑘) ∈ V)
218 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
219214, 216, 217, 208, 218fsuppssov1 9335 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) finSupp (0g‘(mulGrp‘𝑅)))
22048, 110, 201, 180, 210, 219gsumcl 19845 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
22132ad2antrr 726 . . . . . . . . 9 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
22228, 136, 221, 155, 151ringcld 20169 . . . . . . . 8 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
223178mptex 7197 . . . . . . . . . . 11 (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V
224223a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) ∈ V)
225 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
226 funmpt 6554 . . . . . . . . . . 11 Fun (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))
227226a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)))
22811, 12, 171, 18mplelsfi 21904 . . . . . . . . . . 11 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g𝑈))
229228adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) finSupp (0g𝑈))
230 ssidd 3970 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))
231 fvexd 6873 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑈) ∈ V)
23220, 230, 179, 231suppssr 8174 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒) = (0g𝑈))
233232fveq1d 6860 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = ((0g𝑈)‘𝑐))
2343, 137, 197, 171, 6, 174mpl0 21915 . . . . . . . . . . . . . . . 16 (𝜑 → (0g𝑈) = ({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
235234adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑈) = ({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
236235fveq1d 6860 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g𝑈)‘𝑐) = (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐))
237 fvex 6871 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
238237fvconst2 7178 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐) = (0g𝑅))
239238adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑐) = (0g𝑅))
240236, 239eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g𝑈)‘𝑐) = (0g𝑅))
241240adantr 480 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → ((0g𝑈)‘𝑐) = (0g𝑅))
242233, 241eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ ({𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∖ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐) = (0g𝑅))
243242, 179suppss2 8179 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) supp (0g𝑅)) ⊆ ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) supp (0g𝑈)))
244224, 225, 227, 229, 243fsuppsssuppgd 9333 . . . . . . . . 9 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)) finSupp (0g𝑅))
24532ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → 𝑅 ∈ Ring)
246 simpr 484 . . . . . . . . . 10 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → 𝑣𝐾)
24728, 136, 197, 245, 246ringlzd 20204 . . . . . . . . 9 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑣𝐾) → ((0g𝑅)(.r𝑅)𝑣) = (0g𝑅))
248244, 247, 155, 151, 225fsuppssov1 9335 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) finSupp (0g𝑅))
24928, 197, 136, 198, 179, 220, 222, 248gsummulc1 20225 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = ((𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
250161, 196, 2493eqtr4d 2774 . . . . . 6 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
251 fveq2 6858 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))
252251adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒))
253 simpl 482 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → 𝑏 = 𝑐)
254252, 253fveq12d 6865 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐))
255 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑒 → (𝑎𝑗) = (𝑒𝑗))
256255adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑎𝑗) = (𝑒𝑗))
257256oveq1d 7402 . . . . . . . . . . . . . 14 ((𝑏 = 𝑐𝑎 = 𝑒) → ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
258257mpteq2dv 5201 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
259258oveq2d 7403 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
260254, 259oveq12d 7405 . . . . . . . . . . 11 ((𝑏 = 𝑐𝑎 = 𝑒) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
261 fveq1 6857 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑏𝑘) = (𝑐𝑘))
262261adantr 480 . . . . . . . . . . . . . 14 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑏𝑘) = (𝑐𝑘))
263262oveq1d 7402 . . . . . . . . . . . . 13 ((𝑏 = 𝑐𝑎 = 𝑒) → ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
264263mpteq2dv 5201 . . . . . . . . . . . 12 ((𝑏 = 𝑐𝑎 = 𝑒) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
265264oveq2d 7403 . . . . . . . . . . 11 ((𝑏 = 𝑐𝑎 = 𝑒) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
266260, 265oveq12d 7405 . . . . . . . . . 10 ((𝑏 = 𝑐𝑎 = 𝑒) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
267 eqid 2729 . . . . . . . . . 10 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
268 ovex 7420 . . . . . . . . . 10 (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ V
269266, 267, 268ovmpoa 7544 . . . . . . . . 9 ((𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
270269adantll 714 . . . . . . . 8 (((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
271270mpteq2dva 5200 . . . . . . 7 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒)) = (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
272271oveq2d 7403 . . . . . 6 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑒)‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑒𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
273250, 272eqtr4d 2767 . . . . 5 ((𝜑𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))
274273mpteq2dva 5200 . . . 4 (𝜑 → (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒)))))
275274oveq2d 7403 . . 3 (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
27632ringcmnd 20193 . . . . 5 (𝜑𝑅 ∈ CMnd)
277 ovex 7420 . . . . . . 7 (ℕ0m 𝐼) ∈ V
278277rabex 5294 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
279278a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
28032adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
28119adantr 480 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹):{𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}⟶(Base‘𝑈))
282 eqid 2729 . . . . . . . . . . . 12 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2834adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
28416adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐽𝐼)
285 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
286282, 13, 283, 284, 285psrbagres 42534 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽) ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
287281, 286ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)) ∈ (Base‘𝑈))
2883, 28, 1, 137, 287mplelf 21907 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
289 difssd 4100 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐼𝐽) ⊆ 𝐼)
290282, 137, 283, 289, 285psrbagres 42534 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)) ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
291288, 290ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) ∈ 𝐾)
292200adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (mulGrp‘𝑅) ∈ CMnd)
29324adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐽 ∈ V)
29451ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (mulGrp‘𝑅) ∈ Mnd)
295282psrbagf 21827 . . . . . . . . . . . . . 14 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
296295adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
297296, 284fssresd 6727 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽):𝐽⟶ℕ0)
298297ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝐽)‘𝑗) ∈ ℕ0)
29958ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
300299adantlr 715 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) ∈ 𝐾)
30148, 49, 294, 298, 300mulgnn0cld 19027 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) ∈ 𝐾)
302301fmpttd 7087 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))):𝐽𝐾)
30324mptexd 7198 . . . . . . . . . . 11 (𝜑 → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) ∈ V)
304303adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) ∈ V)
305 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g‘(mulGrp‘𝑅)) ∈ V)
306 funmpt 6554 . . . . . . . . . . 11 Fun (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
307306a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → Fun (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
308282psrbagfsupp 21828 . . . . . . . . . . . 12 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑 finSupp 0)
309308adantl 481 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 finSupp 0)
310 0zd 12541 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 0 ∈ ℤ)
311309, 310fsuppres 9344 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝐽) finSupp 0)
312 ssidd 3970 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝐽) supp 0) ⊆ ((𝑑𝐽) supp 0))
313297, 312, 293, 310suppssr 8174 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → ((𝑑𝐽)‘𝑗) = 0)
314313oveq1d 7402 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
315 eldifi 4094 . . . . . . . . . . . . 13 (𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0)) → 𝑗𝐽)
31648, 110, 49mulg0 19006 . . . . . . . . . . . . . 14 (((𝐴𝐽)‘𝑗) ∈ 𝐾 → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
317300, 316syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
318315, 317sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (0(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
319314, 318eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗 ∈ (𝐽 ∖ ((𝑑𝐽) supp 0))) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = (0g‘(mulGrp‘𝑅)))
320319, 293suppss2 8179 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) supp (0g‘(mulGrp‘𝑅))) ⊆ ((𝑑𝐽) supp 0))
321304, 305, 307, 311, 320fsuppsssuppgd 9333 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) finSupp (0g‘(mulGrp‘𝑅)))
32248, 110, 292, 293, 302, 321gsumcl 19845 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
32328, 136, 280, 291, 322ringcld 20169 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
3246adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐼𝐽) ∈ V)
32551ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (mulGrp‘𝑅) ∈ Mnd)
326296, 289fssresd 6727 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)):(𝐼𝐽)⟶ℕ0)
327326ffvelcdmda 7056 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) ∈ ℕ0)
328206ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
329328adantlr 715 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
33048, 49, 325, 327, 329mulgnn0cld 19027 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) ∈ 𝐾)
331330fmpttd 7087 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))):(𝐼𝐽)⟶𝐾)
332324mptexd 7198 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) ∈ V)
333 funmpt 6554 . . . . . . . . . 10 Fun (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
334333a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → Fun (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
335309, 310fsuppres 9344 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑 ↾ (𝐼𝐽)) finSupp 0)
336 ssidd 3970 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑 ↾ (𝐼𝐽)) supp 0) ⊆ ((𝑑 ↾ (𝐼𝐽)) supp 0))
337326, 336, 324, 310suppssr 8174 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = 0)
338337oveq1d 7402 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
339 eldifi 4094 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0)) → 𝑘 ∈ (𝐼𝐽))
340339, 329sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾)
34148, 110, 49mulg0 19006 . . . . . . . . . . . 12 (((𝐴 ↾ (𝐼𝐽))‘𝑘) ∈ 𝐾 → (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
342340, 341syl 17 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (0(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
343338, 342eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ ((𝐼𝐽) ∖ ((𝑑 ↾ (𝐼𝐽)) supp 0))) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = (0g‘(mulGrp‘𝑅)))
344343, 324suppss2 8179 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) supp (0g‘(mulGrp‘𝑅))) ⊆ ((𝑑 ↾ (𝐼𝐽)) supp 0))
345332, 305, 334, 335, 344fsuppsssuppgd 9333 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) finSupp (0g‘(mulGrp‘𝑅)))
34648, 110, 292, 324, 331, 345gsumcl 19845 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
34728, 136, 280, 323, 346ringcld 20169 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
348347fmpttd 7087 . . . . 5 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
3497adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
35017adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
351282, 14, 15, 349, 284, 350, 285selvvvval 42573 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) = (𝐹𝑑))
352351mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)))
353 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
35414, 353, 15, 282, 17mplelf 21907 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
355354feqmptd 6929 . . . . . . . . 9 (𝜑𝐹 = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)))
35614, 15, 197, 17mplelsfi 21904 . . . . . . . . 9 (𝜑𝐹 finSupp (0g𝑅))
357355, 356eqbrtrrd 5131 . . . . . . . 8 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑑)) finSupp (0g𝑅))
358352, 357eqbrtrd 5129 . . . . . . 7 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))) finSupp (0g𝑅))
35932adantr 480 . . . . . . . 8 ((𝜑𝑣𝐾) → 𝑅 ∈ Ring)
360 simpr 484 . . . . . . . 8 ((𝜑𝑣𝐾) → 𝑣𝐾)
36128, 136, 197, 359, 360ringlzd 20204 . . . . . . 7 ((𝜑𝑣𝐾) → ((0g𝑅)(.r𝑅)𝑣) = (0g𝑅))
362 fvexd 6873 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) ∈ V)
363 fvexd 6873 . . . . . . 7 (𝜑 → (0g𝑅) ∈ V)
364358, 361, 362, 322, 363fsuppssov1 9335 . . . . . 6 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))) finSupp (0g𝑅))
365 ovexd 7422 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ V)
366364, 361, 365, 346, 363fsuppssov1 9335 . . . . 5 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) finSupp (0g𝑅))
367 eqid 2729 . . . . . 6 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))
368282, 13, 137, 367, 4, 16evlselvlem 42574 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
36928, 197, 276, 279, 348, 366, 368gsumf1o 19846 . . . 4 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))))
370137psrbagf 21827 . . . . . . . . . 10 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏:(𝐼𝐽)⟶ℕ0)
371370ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏:(𝐼𝐽)⟶ℕ0)
37213psrbagf 21827 . . . . . . . . . 10 (𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑎:𝐽⟶ℕ0)
373372ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎:𝐽⟶ℕ0)
374 disjdifr 4436 . . . . . . . . . 10 ((𝐼𝐽) ∩ 𝐽) = ∅
375374a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝐼𝐽) ∩ 𝐽) = ∅)
376371, 373, 375fun2d 6724 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
377 undifr 4446 . . . . . . . . . . 11 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
37816, 377sylib 218 . . . . . . . . . 10 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
379378adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
380379feq2d 6672 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑏𝑎):𝐼⟶ℕ0))
381376, 380mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎):𝐼⟶ℕ0)
382 vex 3451 . . . . . . . . . . 11 𝑏 ∈ V
383 vex 3451 . . . . . . . . . . 11 𝑎 ∈ V
384382, 383unex 7720 . . . . . . . . . 10 (𝑏𝑎) ∈ V
385384a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) ∈ V)
386 0zd 12541 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 0 ∈ ℤ)
387381ffund 6692 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → Fun (𝑏𝑎))
388137psrbagfsupp 21828 . . . . . . . . . . 11 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏 finSupp 0)
389388ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 finSupp 0)
39013psrbagfsupp 21828 . . . . . . . . . . 11 (𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} → 𝑎 finSupp 0)
391390ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 finSupp 0)
392389, 391fsuppun 9338 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) supp 0) ∈ Fin)
393385, 386, 387, 392isfsuppd 9317 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) finSupp 0)
394 fcdmnn0fsuppg 12502 . . . . . . . . 9 (((𝑏𝑎) ∈ V ∧ (𝑏𝑎):𝐼⟶ℕ0) → ((𝑏𝑎) finSupp 0 ↔ ((𝑏𝑎) “ ℕ) ∈ Fin))
395385, 381, 394syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) finSupp 0 ↔ ((𝑏𝑎) “ ℕ) ∈ Fin))
396393, 395mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) “ ℕ) ∈ Fin)
3974adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝐼𝑉)
398282psrbag 21826 . . . . . . . 8 (𝐼𝑉 → ((𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ ((𝑏𝑎):𝐼⟶ℕ0 ∧ ((𝑏𝑎) “ ℕ) ∈ Fin)))
399397, 398syl 17 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ ((𝑏𝑎):𝐼⟶ℕ0 ∧ ((𝑏𝑎) “ ℕ) ∈ Fin)))
400381, 396, 399mpbir2and 713 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
401 eqidd 2730 . . . . . 6 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))
402 eqidd 2730 . . . . . 6 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
403 reseq1 5944 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → (𝑑𝐽) = ((𝑏𝑎) ↾ 𝐽))
404403fveq2d 6862 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽)))
405 reseq1 5944 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (𝑑 ↾ (𝐼𝐽)) = ((𝑏𝑎) ↾ (𝐼𝐽)))
406404, 405fveq12d 6865 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽))))
407403fveq1d 6860 . . . . . . . . . . . . 13 (𝑑 = (𝑏𝑎) → ((𝑑𝐽)‘𝑗) = (((𝑏𝑎) ↾ 𝐽)‘𝑗))
408407oveq1d 7402 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
409408mpteq2dv 5201 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
410409oveq2d 7403 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
411406, 410oveq12d 7405 . . . . . . . . 9 (𝑑 = (𝑏𝑎) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
412405fveq1d 6860 . . . . . . . . . . . 12 (𝑑 = (𝑏𝑎) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = (((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘))
413412oveq1d 7402 . . . . . . . . . . 11 (𝑑 = (𝑏𝑎) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
414413mpteq2dv 5201 . . . . . . . . . 10 (𝑑 = (𝑏𝑎) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
415414oveq2d 7403 . . . . . . . . 9 (𝑑 = (𝑏𝑎) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
416411, 415oveq12d 7405 . . . . . . . 8 (𝑑 = (𝑏𝑎) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
417384, 416csbie 3897 . . . . . . 7 (𝑏𝑎) / 𝑑(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
418370ffnd 6689 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑏 Fn (𝐼𝐽))
419418ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 Fn (𝐼𝐽))
420373ffnd 6689 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 Fn 𝐽)
421 fnunres2 6631 . . . . . . . . . . . 12 ((𝑏 Fn (𝐼𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑏𝑎) ↾ 𝐽) = 𝑎)
422419, 420, 375, 421syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ↾ 𝐽) = 𝑎)
423422fveq2d 6862 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎))
424 fnunres1 6630 . . . . . . . . . . 11 ((𝑏 Fn (𝐼𝐽) ∧ 𝑎 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑏𝑎) ↾ (𝐼𝐽)) = 𝑏)
425419, 420, 375, 424syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((𝑏𝑎) ↾ (𝐼𝐽)) = 𝑏)
426423, 425fveq12d 6865 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽))) = (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏))
427422fveq1d 6860 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((𝑏𝑎) ↾ 𝐽)‘𝑗) = (𝑎𝑗))
428427oveq1d 7402 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
429428mpteq2dv 5201 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))) = (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
430429oveq2d 7403 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
431426, 430oveq12d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))))
432425fveq1d 6860 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘) = (𝑏𝑘))
433432oveq1d 7402 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
434433mpteq2dv 5201 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
435434oveq2d 7403 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
436431, 435oveq12d 7405 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘((𝑏𝑎) ↾ 𝐽))‘((𝑏𝑎) ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((((𝑏𝑎) ↾ 𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((((𝑏𝑎) ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
437417, 436eqtrid 2776 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝑏𝑎) / 𝑑(((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
438400, 401, 402, 437fmpocos 42222 . . . . 5 (𝜑 → ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))) = (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
439438oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)))) = (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
440 ovex 7420 . . . . . . 7 (ℕ0m (𝐼𝐽)) ∈ V
441440rabex 5294 . . . . . 6 {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
442441a1i 11 . . . . 5 (𝜑 → {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
443178a1i 11 . . . . 5 (𝜑 → {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ∈ V)
44432adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ Ring)
44519ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎) ∈ (Base‘𝑈))
4463, 28, 1, 137, 445mplelf 21907 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎):{𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}⟶𝐾)
447446ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
448447an32s 652 . . . . . . . . . 10 (((𝜑𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
449448anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏) ∈ 𝐾)
45024adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝐽 ∈ V)
4517adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑅 ∈ CRing)
45236adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐴𝐽) ∈ (𝐾m 𝐽))
453 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})
45413, 28, 47, 49, 450, 451, 452, 453evlsvvvallem 42549 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))) ∈ 𝐾)
45528, 136, 444, 449, 454ringcld 20169 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))) ∈ 𝐾)
4566adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐼𝐽) ∈ V)
45735, 5elmapssresd 42229 . . . . . . . . . 10 (𝜑 → (𝐴 ↾ (𝐼𝐽)) ∈ (𝐾m (𝐼𝐽)))
458457adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (𝐴 ↾ (𝐼𝐽)) ∈ (𝐾m (𝐼𝐽)))
459 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → 𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin})
460137, 28, 47, 49, 456, 451, 458, 459evlsvvvallem 42549 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))) ∈ 𝐾)
46128, 136, 444, 455, 460ringcld 20169 . . . . . . 7 ((𝜑 ∧ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
462461ralrimivva 3180 . . . . . 6 (𝜑 → ∀𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾)
463267fmpo 8047 . . . . . 6 (∀𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}∀𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) ∈ 𝐾 ↔ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})⟶𝐾)
464462, 463sylib 218 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})⟶𝐾)
465 f1of1 6799 . . . . . . . 8 ((𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
466368, 465syl 17 . . . . . . 7 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎)):({𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin})–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
467278mptex 7197 . . . . . . . 8 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∈ V
468467a1i 11 . . . . . . 7 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∈ V)
469366, 466, 363, 468fsuppco 9353 . . . . . 6 (𝜑 → ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) ∘ (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑏𝑎))) finSupp (0g𝑅))
470438, 469eqbrtrrd 5131 . . . . 5 (𝜑 → (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) finSupp (0g𝑅))
47128, 197, 276, 442, 443, 464, 470gsumxp 19906 . . . 4 (𝜑 → (𝑅 Σg (𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
472369, 439, 4713eqtrd 2768 . . 3 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (𝑐(𝑏 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}, 𝑎 ∈ {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘𝑎)‘𝑏)(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ ((𝑎𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑏𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))𝑒))))))
47328, 136, 280, 291, 322, 346ringassd 20166 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)(((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))))
47447, 136mgpplusg 20053 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
47551ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (mulGrp‘𝑅) ∈ Mnd)
476296ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
47757adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐴:𝐼𝐾)
478477ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝐴𝑖) ∈ 𝐾)
47948, 49, 475, 476, 478mulgnn0cld 19027 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) ∈ 𝐾)
480479fmpttd 7087 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))):𝐼𝐾)
481296feqmptd 6929 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 = (𝑖𝐼 ↦ (𝑑𝑖)))
482481, 309eqbrtrrd 5131 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ (𝑑𝑖)) finSupp 0)
483111adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘𝐾) → (0(.g‘(mulGrp‘𝑅))𝑘) = (0g‘(mulGrp‘𝑅)))
484482, 483, 476, 478, 305fsuppssov1 9335 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) finSupp (0g‘(mulGrp‘𝑅)))
485 disjdif 4435 . . . . . . . . . 10 (𝐽 ∩ (𝐼𝐽)) = ∅
486485a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐽 ∩ (𝐼𝐽)) = ∅)
487 undif 4445 . . . . . . . . . . . 12 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
48816, 487sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
489488eqcomd 2735 . . . . . . . . . 10 (𝜑𝐼 = (𝐽 ∪ (𝐼𝐽)))
490489adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 = (𝐽 ∪ (𝐼𝐽)))
49148, 110, 474, 292, 283, 480, 484, 486, 490gsumsplit 19858 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))) = (((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽))(.r𝑅)((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)))))
492284resmptd 6011 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽) = (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))
493 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑑𝑖) = (𝑑𝑗))
494 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
495493, 494oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) = ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
496495cbvmptv 5211 . . . . . . . . . . . 12 (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑗𝐽 ↦ ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
497 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → 𝑗𝐽)
498497fvresd 6878 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝐽)‘𝑗) = (𝑑𝑗))
499497fvresd 6878 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝐴𝐽)‘𝑗) = (𝐴𝑗))
500498, 499oveq12d 7405 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)) = ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)))
501500eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑗𝐽) → ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗)) = (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))
502501mpteq2dva 5200 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑗𝐽 ↦ ((𝑑𝑗)(.g‘(mulGrp‘𝑅))(𝐴𝑗))) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
503496, 502eqtrid 2776 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐽 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
504492, 503eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽) = (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))
505504oveq2d 7403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽)) = ((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))
506289resmptd 6011 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)) = (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))
507 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
508 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
509507, 508oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)) = ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
510509cbvmptv 5211 . . . . . . . . . . . 12 (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
511 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → 𝑘 ∈ (𝐼𝐽))
512511fvresd 6878 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑 ↾ (𝐼𝐽))‘𝑘) = (𝑑𝑘))
513511fvresd 6878 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝐴 ↾ (𝐼𝐽))‘𝑘) = (𝐴𝑘))
514512, 513oveq12d 7405 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)) = ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)))
515514eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘)) = (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))
516515mpteq2dva 5200 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑑𝑘)(.g‘(mulGrp‘𝑅))(𝐴𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
517510, 516eqtrid 2776 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖 ∈ (𝐼𝐽) ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
518506, 517eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)) = (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))
519518oveq2d 7403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽))) = ((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))
520505, 519oveq12d 7405 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ 𝐽))(.r𝑅)((mulGrp‘𝑅) Σg ((𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))) ↾ (𝐼𝐽)))) = (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))
521491, 520eqtr2d 2765 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))))
522351, 521oveq12d 7405 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)(((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))
523473, 522eqtrd 2764 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))) = ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))
524523mpteq2dva 5200 . . . 4 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖)))))))
525524oveq2d 7403 . . 3 (𝜑 → (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑑𝐽))‘(𝑑 ↾ (𝐼𝐽)))(.r𝑅)((mulGrp‘𝑅) Σg (𝑗𝐽 ↦ (((𝑑𝐽)‘𝑗)(.g‘(mulGrp‘𝑅))((𝐴𝐽)‘𝑗)))))(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑑 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
526275, 472, 5253eqtr2d 2770 . 2 (𝜑 → (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
527 eqid 2729 . . 3 ((𝐼𝐽) eval 𝑅) = ((𝐼𝐽) eval 𝑅)
528527, 3, 1, 137, 28, 47, 49, 136, 6, 7, 166, 457evlvvval 42561 . 2 (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (𝑅 Σg (𝑐 ∈ {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (((((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽)))‘𝑐)(.r𝑅)((mulGrp‘𝑅) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑐𝑘)(.g‘(mulGrp‘𝑅))((𝐴 ↾ (𝐼𝐽))‘𝑘))))))))
529 eqid 2729 . . 3 (𝐼 eval 𝑅) = (𝐼 eval 𝑅)
530529, 14, 15, 282, 28, 47, 49, 136, 4, 7, 17, 35evlvvval 42561 . 2 (𝜑 → (((𝐼 eval 𝑅)‘𝐹)‘𝐴) = (𝑅 Σg (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((𝐹𝑑)(.r𝑅)((mulGrp‘𝑅) Σg (𝑖𝐼 ↦ ((𝑑𝑖)(.g‘(mulGrp‘𝑅))(𝐴𝑖))))))))
531526, 528, 5303eqtr4d 2774 1 (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  csb 3862  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cres 5640  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068  cn 12186  0cn0 12442  cz 12529  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708  Grpcgrp 18865  .gcmg 18999   GrpHom cghm 19144  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  AssAlgcasa 21759  algSccascl 21761   mPoly cmpl 21815   eval cevl 21980   selectVars cslv 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-evl 21982  df-selv 22019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator