MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniexr Structured version   Visualization version   GIF version

Theorem uniexr 7750
Description: Converse of the Axiom of Union. Note that it does not require ax-un 7725. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexr ( 𝐴𝑉𝐴 ∈ V)

Proof of Theorem uniexr
StepHypRef Expression
1 pwuni 4950 . 2 𝐴 ⊆ 𝒫 𝐴
2 pwexg 5377 . 2 ( 𝐴𝑉 → 𝒫 𝐴 ∈ V)
3 ssexg 5324 . 2 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
41, 2, 3sylancr 588 1 ( 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475  wss 3949  𝒫 cpw 4603   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pow 5364
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605  df-uni 4910
This theorem is referenced by:  uniexb  7751  ssonprc  7775  ac5num  10031  bj-restv  35976  bj-mooreset  35983  ipoglb0  47619
  Copyright terms: Public domain W3C validator