MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniexr Structured version   Visualization version   GIF version

Theorem uniexr 7613
Description: Converse of the Axiom of Union. Note that it does not require ax-un 7588. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexr ( 𝐴𝑉𝐴 ∈ V)

Proof of Theorem uniexr
StepHypRef Expression
1 pwuni 4878 . 2 𝐴 ⊆ 𝒫 𝐴
2 pwexg 5301 . 2 ( 𝐴𝑉 → 𝒫 𝐴 ∈ V)
3 ssexg 5247 . 2 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
41, 2, 3sylancr 587 1 ( 𝐴𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  uniexb  7614  ssonprc  7637  ac5num  9792  bj-restv  35266  bj-mooreset  35273  ipoglb0  46280
  Copyright terms: Public domain W3C validator