| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexr | Structured version Visualization version GIF version | ||
| Description: Converse of the Axiom of Union. Note that it does not require ax-un 7729. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexr | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4921 | . 2 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | pwexg 5348 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) | |
| 3 | ssexg 5293 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 df-uni 4884 |
| This theorem is referenced by: uniexb 7758 ssonprc 7781 ac5num 10050 bj-restv 37113 bj-mooreset 37120 ipoglb0 48968 |
| Copyright terms: Public domain | W3C validator |