| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexr | Structured version Visualization version GIF version | ||
| Description: Converse of the Axiom of Union. Note that it does not require ax-un 7714. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexr | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4912 | . 2 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | pwexg 5336 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) | |
| 3 | ssexg 5281 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-uni 4875 |
| This theorem is referenced by: uniexb 7743 ssonprc 7766 ac5num 9996 bj-restv 37090 bj-mooreset 37097 ipoglb0 48986 |
| Copyright terms: Public domain | W3C validator |