| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniexr | Structured version Visualization version GIF version | ||
| Description: Converse of the Axiom of Union. Note that it does not require ax-un 7668. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexr | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4894 | . 2 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | pwexg 5314 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) | |
| 3 | ssexg 5259 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 df-uni 4857 |
| This theorem is referenced by: uniexb 7697 ssonprc 7720 ac5num 9927 bj-restv 37139 bj-mooreset 37146 ipoglb0 49104 |
| Copyright terms: Public domain | W3C validator |