Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniexr | Structured version Visualization version GIF version |
Description: Converse of the Axiom of Union. Note that it does not require ax-un 7588. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexr | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4878 | . 2 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwexg 5301 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) | |
3 | ssexg 5247 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 |
This theorem is referenced by: uniexb 7614 ssonprc 7637 ac5num 9792 bj-restv 35266 bj-mooreset 35273 ipoglb0 46280 |
Copyright terms: Public domain | W3C validator |