![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniexr | Structured version Visualization version GIF version |
Description: Converse of the Axiom of Union. Note that it does not require ax-un 7725. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexr | ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4950 | . 2 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | pwexg 5377 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V) | |
3 | ssexg 5324 | . 2 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | sylancr 588 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 |
This theorem is referenced by: uniexb 7751 ssonprc 7775 ac5num 10031 bj-restv 35976 bj-mooreset 35983 ipoglb0 47619 |
Copyright terms: Public domain | W3C validator |