Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssonprc | Structured version Visualization version GIF version |
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
ssonprc | ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3049 | . 2 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | ssorduni 7606 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | ordeleqon 7609 | . . . . . . . 8 ⊢ (Ord ∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) | |
4 | 2, 3 | sylib 217 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) |
5 | 4 | orcomd 867 | . . . . . 6 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = On ∨ ∪ 𝐴 ∈ On)) |
6 | 5 | ord 860 | . . . . 5 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → ∪ 𝐴 ∈ On)) |
7 | uniexr 7591 | . . . . 5 ⊢ (∪ 𝐴 ∈ On → 𝐴 ∈ V) | |
8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → 𝐴 ∈ V)) |
9 | 8 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V → ∪ 𝐴 = On)) |
10 | onprc 7605 | . . . 4 ⊢ ¬ On ∈ V | |
11 | uniexg 7571 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
12 | eleq1 2826 | . . . . 5 ⊢ (∪ 𝐴 = On → (∪ 𝐴 ∈ V ↔ On ∈ V)) | |
13 | 11, 12 | syl5ib 243 | . . . 4 ⊢ (∪ 𝐴 = On → (𝐴 ∈ V → On ∈ V)) |
14 | 10, 13 | mtoi 198 | . . 3 ⊢ (∪ 𝐴 = On → ¬ 𝐴 ∈ V) |
15 | 9, 14 | impbid1 224 | . 2 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ ∪ 𝐴 = On)) |
16 | 1, 15 | syl5bb 282 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: inaprc 10523 |
Copyright terms: Public domain | W3C validator |