MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   GIF version

Theorem ssonprc 7807
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 3045 . 2 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 ssorduni 7798 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
3 ordeleqon 7801 . . . . . . . 8 (Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On))
42, 3sylib 218 . . . . . . 7 (𝐴 ⊆ On → ( 𝐴 ∈ On ∨ 𝐴 = On))
54orcomd 871 . . . . . 6 (𝐴 ⊆ On → ( 𝐴 = On ∨ 𝐴 ∈ On))
65ord 864 . . . . 5 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ On))
7 uniexr 7782 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ V)
86, 7syl6 35 . . . 4 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ V))
98con1d 145 . . 3 (𝐴 ⊆ On → (¬ 𝐴 ∈ V → 𝐴 = On))
10 onprc 7797 . . . 4 ¬ On ∈ V
11 uniexg 7759 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
12 eleq1 2827 . . . . 5 ( 𝐴 = On → ( 𝐴 ∈ V ↔ On ∈ V))
1311, 12imbitrid 244 . . . 4 ( 𝐴 = On → (𝐴 ∈ V → On ∈ V))
1410, 13mtoi 199 . . 3 ( 𝐴 = On → ¬ 𝐴 ∈ V)
159, 14impbid1 225 . 2 (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ 𝐴 = On))
161, 15bitrid 283 1 (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1537  wcel 2106  wnel 3044  Vcvv 3478  wss 3963   cuni 4912  Ord word 6385  Oncon0 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390
This theorem is referenced by:  inaprc  10874
  Copyright terms: Public domain W3C validator