MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   GIF version

Theorem ssonprc 7763
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 3030 . 2 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 ssorduni 7755 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
3 ordeleqon 7758 . . . . . . . 8 (Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On))
42, 3sylib 218 . . . . . . 7 (𝐴 ⊆ On → ( 𝐴 ∈ On ∨ 𝐴 = On))
54orcomd 871 . . . . . 6 (𝐴 ⊆ On → ( 𝐴 = On ∨ 𝐴 ∈ On))
65ord 864 . . . . 5 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ On))
7 uniexr 7739 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ V)
86, 7syl6 35 . . . 4 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ V))
98con1d 145 . . 3 (𝐴 ⊆ On → (¬ 𝐴 ∈ V → 𝐴 = On))
10 onprc 7754 . . . 4 ¬ On ∈ V
11 uniexg 7716 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
12 eleq1 2816 . . . . 5 ( 𝐴 = On → ( 𝐴 ∈ V ↔ On ∈ V))
1311, 12imbitrid 244 . . . 4 ( 𝐴 = On → (𝐴 ∈ V → On ∈ V))
1410, 13mtoi 199 . . 3 ( 𝐴 = On → ¬ 𝐴 ∈ V)
159, 14impbid1 225 . 2 (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ 𝐴 = On))
161, 15bitrid 283 1 (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3447  wss 3914   cuni 4871  Ord word 6331  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  inaprc  10789
  Copyright terms: Public domain W3C validator