Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssonprc | Structured version Visualization version GIF version |
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
ssonprc | ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3050 | . 2 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | ssorduni 7629 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | ordeleqon 7632 | . . . . . . . 8 ⊢ (Ord ∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) | |
4 | 2, 3 | sylib 217 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) |
5 | 4 | orcomd 868 | . . . . . 6 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = On ∨ ∪ 𝐴 ∈ On)) |
6 | 5 | ord 861 | . . . . 5 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → ∪ 𝐴 ∈ On)) |
7 | uniexr 7613 | . . . . 5 ⊢ (∪ 𝐴 ∈ On → 𝐴 ∈ V) | |
8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → 𝐴 ∈ V)) |
9 | 8 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V → ∪ 𝐴 = On)) |
10 | onprc 7628 | . . . 4 ⊢ ¬ On ∈ V | |
11 | uniexg 7593 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
12 | eleq1 2826 | . . . . 5 ⊢ (∪ 𝐴 = On → (∪ 𝐴 ∈ V ↔ On ∈ V)) | |
13 | 11, 12 | syl5ib 243 | . . . 4 ⊢ (∪ 𝐴 = On → (𝐴 ∈ V → On ∈ V)) |
14 | 10, 13 | mtoi 198 | . . 3 ⊢ (∪ 𝐴 = On → ¬ 𝐴 ∈ V) |
15 | 9, 14 | impbid1 224 | . 2 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ ∪ 𝐴 = On)) |
16 | 1, 15 | bitrid 282 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: inaprc 10592 |
Copyright terms: Public domain | W3C validator |