![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssonprc | Structured version Visualization version GIF version |
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
ssonprc | ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3053 | . 2 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | ssorduni 7814 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | ordeleqon 7817 | . . . . . . . 8 ⊢ (Ord ∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) | |
4 | 2, 3 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) |
5 | 4 | orcomd 870 | . . . . . 6 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = On ∨ ∪ 𝐴 ∈ On)) |
6 | 5 | ord 863 | . . . . 5 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → ∪ 𝐴 ∈ On)) |
7 | uniexr 7798 | . . . . 5 ⊢ (∪ 𝐴 ∈ On → 𝐴 ∈ V) | |
8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → 𝐴 ∈ V)) |
9 | 8 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V → ∪ 𝐴 = On)) |
10 | onprc 7813 | . . . 4 ⊢ ¬ On ∈ V | |
11 | uniexg 7775 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
12 | eleq1 2832 | . . . . 5 ⊢ (∪ 𝐴 = On → (∪ 𝐴 ∈ V ↔ On ∈ V)) | |
13 | 11, 12 | imbitrid 244 | . . . 4 ⊢ (∪ 𝐴 = On → (𝐴 ∈ V → On ∈ V)) |
14 | 10, 13 | mtoi 199 | . . 3 ⊢ (∪ 𝐴 = On → ¬ 𝐴 ∈ V) |
15 | 9, 14 | impbid1 225 | . 2 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ ∪ 𝐴 = On)) |
16 | 1, 15 | bitrid 283 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: inaprc 10905 |
Copyright terms: Public domain | W3C validator |