| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssonprc | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| ssonprc | ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3033 | . 2 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
| 2 | ssorduni 7707 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | ordeleqon 7710 | . . . . . . . 8 ⊢ (Ord ∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) | |
| 4 | 2, 3 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) |
| 5 | 4 | orcomd 871 | . . . . . 6 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = On ∨ ∪ 𝐴 ∈ On)) |
| 6 | 5 | ord 864 | . . . . 5 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → ∪ 𝐴 ∈ On)) |
| 7 | uniexr 7691 | . . . . 5 ⊢ (∪ 𝐴 ∈ On → 𝐴 ∈ V) | |
| 8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → 𝐴 ∈ V)) |
| 9 | 8 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V → ∪ 𝐴 = On)) |
| 10 | onprc 7706 | . . . 4 ⊢ ¬ On ∈ V | |
| 11 | uniexg 7668 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 12 | eleq1 2819 | . . . . 5 ⊢ (∪ 𝐴 = On → (∪ 𝐴 ∈ V ↔ On ∈ V)) | |
| 13 | 11, 12 | imbitrid 244 | . . . 4 ⊢ (∪ 𝐴 = On → (𝐴 ∈ V → On ∈ V)) |
| 14 | 10, 13 | mtoi 199 | . . 3 ⊢ (∪ 𝐴 = On → ¬ 𝐴 ∈ V) |
| 15 | 9, 14 | impbid1 225 | . 2 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ ∪ 𝐴 = On)) |
| 16 | 1, 15 | bitrid 283 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4854 Ord word 6300 Oncon0 6301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 |
| This theorem is referenced by: inaprc 10722 |
| Copyright terms: Public domain | W3C validator |