| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssonprc | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| ssonprc | ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3031 | . 2 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
| 2 | ssorduni 7758 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | ordeleqon 7761 | . . . . . . . 8 ⊢ (Ord ∪ 𝐴 ↔ (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) | |
| 4 | 2, 3 | sylib 218 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (∪ 𝐴 ∈ On ∨ ∪ 𝐴 = On)) |
| 5 | 4 | orcomd 871 | . . . . . 6 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = On ∨ ∪ 𝐴 ∈ On)) |
| 6 | 5 | ord 864 | . . . . 5 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → ∪ 𝐴 ∈ On)) |
| 7 | uniexr 7742 | . . . . 5 ⊢ (∪ 𝐴 ∈ On → 𝐴 ∈ V) | |
| 8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 = On → 𝐴 ∈ V)) |
| 9 | 8 | con1d 145 | . . 3 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V → ∪ 𝐴 = On)) |
| 10 | onprc 7757 | . . . 4 ⊢ ¬ On ∈ V | |
| 11 | uniexg 7719 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 12 | eleq1 2817 | . . . . 5 ⊢ (∪ 𝐴 = On → (∪ 𝐴 ∈ V ↔ On ∈ V)) | |
| 13 | 11, 12 | imbitrid 244 | . . . 4 ⊢ (∪ 𝐴 = On → (𝐴 ∈ V → On ∈ V)) |
| 14 | 10, 13 | mtoi 199 | . . 3 ⊢ (∪ 𝐴 = On → ¬ 𝐴 ∈ V) |
| 15 | 9, 14 | impbid1 225 | . 2 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ ∪ 𝐴 = On)) |
| 16 | 1, 15 | bitrid 283 | 1 ⊢ (𝐴 ⊆ On → (𝐴 ∉ V ↔ ∪ 𝐴 = On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: inaprc 10796 |
| Copyright terms: Public domain | W3C validator |