Step | Hyp | Ref
| Expression |
1 | | uniexr 7591 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → 𝐴
∈ V) |
2 | | dfac8b 9718 |
. . . 4
⊢ (∪ 𝐴
∈ dom card → ∃𝑟 𝑟 We ∪ 𝐴) |
3 | | dfac8c 9720 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
4 | 1, 2, 3 | sylc 65 |
. . 3
⊢ (∪ 𝐴
∈ dom card → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
5 | 4 | adantr 480 |
. 2
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) |
6 | 1 | ad2antrr 722 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → 𝐴 ∈ V) |
7 | 6 | mptexd 7082 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) ∈ V) |
8 | | nelne2 3041 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅) |
9 | 8 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((¬
∅ ∈ 𝐴 ∧
𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
10 | 9 | adantll 710 |
. . . . . . . . . 10
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
11 | | pm2.27 42 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → (𝑔‘𝑥) ∈ 𝑥)) |
13 | 12 | ralimdva 3102 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥)) |
14 | 13 | imp 406 |
. . . . . . 7
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
15 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑔‘𝑥) = (𝑔‘𝑦)) |
16 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
17 | 15, 16 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑦) ∈ 𝑦)) |
18 | 17 | rspccva 3551 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝑔‘𝑥) ∈ 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
19 | 14, 18 | sylan 579 |
. . . . . 6
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ 𝑦) |
20 | | elunii 4841 |
. . . . . 6
⊢ (((𝑔‘𝑦) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
21 | 19, 20 | sylancom 587 |
. . . . 5
⊢ ((((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ∪ 𝐴) |
22 | 21 | fmpttd 6971 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴) |
23 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑔‘𝑦) = (𝑔‘𝑥)) |
24 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) |
25 | | fvex 6769 |
. . . . . . . 8
⊢ (𝑔‘𝑥) ∈ V |
26 | 23, 24, 25 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) = (𝑔‘𝑥)) |
27 | 26 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑥) ∈ 𝑥)) |
28 | 27 | ralbiia 3089 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝑥) |
29 | 14, 28 | sylibr 233 |
. . . 4
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥) |
30 | 22, 29 | jca 511 |
. . 3
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
31 | | feq1 6565 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓:𝐴⟶∪ 𝐴 ↔ (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴)) |
32 | | fveq1 6755 |
. . . . . 6
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (𝑓‘𝑥) = ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥)) |
33 | 32 | eleq1d 2823 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓‘𝑥) ∈ 𝑥 ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
34 | 33 | ralbidv 3120 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥)) |
35 | 31, 34 | anbi12d 630 |
. . 3
⊢ (𝑓 = (𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)) → ((𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦)):𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑦 ∈ 𝐴 ↦ (𝑔‘𝑦))‘𝑥) ∈ 𝑥))) |
36 | 7, 30, 35 | spcedv 3527 |
. 2
⊢ (((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
37 | 5, 36 | exlimddv 1939 |
1
⊢ ((∪ 𝐴
∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |