MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Visualization version   GIF version

Theorem ac5num 9989
Description: A version of ac5b 10431 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5num
Dummy variables 𝑔 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexr 7739 . . . 4 ( 𝐴 ∈ dom card → 𝐴 ∈ V)
2 dfac8b 9984 . . . 4 ( 𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
3 dfac8c 9986 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝐴 → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
41, 2, 3sylc 65 . . 3 ( 𝐴 ∈ dom card → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
54adantr 480 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
61ad2antrr 726 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → 𝐴 ∈ V)
76mptexd 7198 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)) ∈ V)
8 nelne2 3023 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅)
98ancoms 458 . . . . . . . . . . 11 ((¬ ∅ ∈ 𝐴𝑥𝐴) → 𝑥 ≠ ∅)
109adantll 714 . . . . . . . . . 10 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
11 pm2.27 42 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1210, 11syl 17 . . . . . . . . 9 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1312ralimdva 3145 . . . . . . . 8 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥))
1413imp 406 . . . . . . 7 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
15 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
16 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
1715, 16eleq12d 2822 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑥 ↔ (𝑔𝑦) ∈ 𝑦))
1817rspccva 3587 . . . . . . 7 ((∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
1914, 18sylan 580 . . . . . 6 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
20 elunii 4876 . . . . . 6 (((𝑔𝑦) ∈ 𝑦𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2119, 20sylancom 588 . . . . 5 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2221fmpttd 7087 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴)
23 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
24 eqid 2729 . . . . . . . 8 (𝑦𝐴 ↦ (𝑔𝑦)) = (𝑦𝐴 ↦ (𝑔𝑦))
25 fvex 6871 . . . . . . . 8 (𝑔𝑥) ∈ V
2623, 24, 25fvmpt 6968 . . . . . . 7 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) = (𝑔𝑥))
2726eleq1d 2813 . . . . . 6 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔𝑥) ∈ 𝑥))
2827ralbiia 3073 . . . . 5 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
2914, 28sylibr 234 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)
3022, 29jca 511 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
31 feq1 6666 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓:𝐴 𝐴 ↔ (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴))
32 fveq1 6857 . . . . . 6 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓𝑥) = ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥))
3332eleq1d 2813 . . . . 5 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓𝑥) ∈ 𝑥 ↔ ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3433ralbidv 3156 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3531, 34anbi12d 632 . . 3 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) ↔ ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)))
367, 30, 35spcedv 3564 . 2 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
375, 36exlimddv 1935 1 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  c0 4296   cuni 4871  cmpt 5188   We wwe 5590  dom cdm 5638  wf 6507  cfv 6511  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-en 8919  df-card 9892
This theorem is referenced by:  numacn  10002  ac5b  10431  ac6num  10432
  Copyright terms: Public domain W3C validator