MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Visualization version   GIF version

Theorem ac5num 9972
Description: A version of ac5b 10414 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5num
Dummy variables 𝑔 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexr 7697 . . . 4 ( 𝐴 ∈ dom card → 𝐴 ∈ V)
2 dfac8b 9967 . . . 4 ( 𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
3 dfac8c 9969 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝐴 → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
41, 2, 3sylc 65 . . 3 ( 𝐴 ∈ dom card → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
54adantr 481 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
61ad2antrr 724 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → 𝐴 ∈ V)
76mptexd 7174 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)) ∈ V)
8 nelne2 3042 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅)
98ancoms 459 . . . . . . . . . . 11 ((¬ ∅ ∈ 𝐴𝑥𝐴) → 𝑥 ≠ ∅)
109adantll 712 . . . . . . . . . 10 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
11 pm2.27 42 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1210, 11syl 17 . . . . . . . . 9 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1312ralimdva 3164 . . . . . . . 8 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥))
1413imp 407 . . . . . . 7 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
15 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
16 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
1715, 16eleq12d 2832 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑥 ↔ (𝑔𝑦) ∈ 𝑦))
1817rspccva 3580 . . . . . . 7 ((∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
1914, 18sylan 580 . . . . . 6 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
20 elunii 4870 . . . . . 6 (((𝑔𝑦) ∈ 𝑦𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2119, 20sylancom 588 . . . . 5 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2221fmpttd 7063 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴)
23 fveq2 6842 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
24 eqid 2736 . . . . . . . 8 (𝑦𝐴 ↦ (𝑔𝑦)) = (𝑦𝐴 ↦ (𝑔𝑦))
25 fvex 6855 . . . . . . . 8 (𝑔𝑥) ∈ V
2623, 24, 25fvmpt 6948 . . . . . . 7 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) = (𝑔𝑥))
2726eleq1d 2822 . . . . . 6 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔𝑥) ∈ 𝑥))
2827ralbiia 3094 . . . . 5 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
2914, 28sylibr 233 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)
3022, 29jca 512 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
31 feq1 6649 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓:𝐴 𝐴 ↔ (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴))
32 fveq1 6841 . . . . . 6 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓𝑥) = ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥))
3332eleq1d 2822 . . . . 5 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓𝑥) ∈ 𝑥 ↔ ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3433ralbidv 3174 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3531, 34anbi12d 631 . . 3 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) ↔ ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)))
367, 30, 35spcedv 3557 . 2 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
375, 36exlimddv 1938 1 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  c0 4282   cuni 4865  cmpt 5188   We wwe 5587  dom cdm 5633  wf 6492  cfv 6496  cardccrd 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-en 8884  df-card 9875
This theorem is referenced by:  numacn  9985  ac5b  10414  ac6num  10415
  Copyright terms: Public domain W3C validator