MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5num Structured version   Visualization version   GIF version

Theorem ac5num 9934
Description: A version of ac5b 10376 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ac5num (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5num
Dummy variables 𝑔 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexr 7702 . . . 4 ( 𝐴 ∈ dom card → 𝐴 ∈ V)
2 dfac8b 9929 . . . 4 ( 𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴)
3 dfac8c 9931 . . . 4 (𝐴 ∈ V → (∃𝑟 𝑟 We 𝐴 → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)))
41, 2, 3sylc 65 . . 3 ( 𝐴 ∈ dom card → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
54adantr 480 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑔𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥))
61ad2antrr 726 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → 𝐴 ∈ V)
76mptexd 7164 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)) ∈ V)
8 nelne2 3027 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ ∅ ∈ 𝐴) → 𝑥 ≠ ∅)
98ancoms 458 . . . . . . . . . . 11 ((¬ ∅ ∈ 𝐴𝑥𝐴) → 𝑥 ≠ ∅)
109adantll 714 . . . . . . . . . 10 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
11 pm2.27 42 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1210, 11syl 17 . . . . . . . . 9 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ 𝑥𝐴) → ((𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → (𝑔𝑥) ∈ 𝑥))
1312ralimdva 3145 . . . . . . . 8 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥))
1413imp 406 . . . . . . 7 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
15 fveq2 6828 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
16 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
1715, 16eleq12d 2827 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑥 ↔ (𝑔𝑦) ∈ 𝑦))
1817rspccva 3572 . . . . . . 7 ((∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
1914, 18sylan 580 . . . . . 6 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝑦)
20 elunii 4863 . . . . . 6 (((𝑔𝑦) ∈ 𝑦𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2119, 20sylancom 588 . . . . 5 (((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) ∧ 𝑦𝐴) → (𝑔𝑦) ∈ 𝐴)
2221fmpttd 7054 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴)
23 fveq2 6828 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
24 eqid 2733 . . . . . . . 8 (𝑦𝐴 ↦ (𝑔𝑦)) = (𝑦𝐴 ↦ (𝑔𝑦))
25 fvex 6841 . . . . . . . 8 (𝑔𝑥) ∈ V
2623, 24, 25fvmpt 6935 . . . . . . 7 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) = (𝑔𝑥))
2726eleq1d 2818 . . . . . 6 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ (𝑔𝑥) ∈ 𝑥))
2827ralbiia 3077 . . . . 5 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝑥)
2914, 28sylibr 234 . . . 4 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)
3022, 29jca 511 . . 3 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
31 feq1 6634 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓:𝐴 𝐴 ↔ (𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴))
32 fveq1 6827 . . . . . 6 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (𝑓𝑥) = ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥))
3332eleq1d 2818 . . . . 5 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓𝑥) ∈ 𝑥 ↔ ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3433ralbidv 3156 . . . 4 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥))
3531, 34anbi12d 632 . . 3 (𝑓 = (𝑦𝐴 ↦ (𝑔𝑦)) → ((𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥) ↔ ((𝑦𝐴 ↦ (𝑔𝑦)):𝐴 𝐴 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑔𝑦))‘𝑥) ∈ 𝑥)))
367, 30, 35spcedv 3549 . 2 ((( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑔𝑥) ∈ 𝑥)) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
375, 36exlimddv 1936 1 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  Vcvv 3437  c0 4282   cuni 4858  cmpt 5174   We wwe 5571  dom cdm 5619  wf 6482  cfv 6486  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-en 8876  df-card 9839
This theorem is referenced by:  numacn  9947  ac5b  10376  ac6num  10377
  Copyright terms: Public domain W3C validator