Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mooreset Structured version   Visualization version   GIF version

Theorem bj-mooreset 35200
Description: A Moore collection is a set. Therefore, the class Moore of all Moore sets defined in df-bj-moore 35202 is actually the class of all Moore collections. This is also illustrated by the lack of sethood condition in bj-ismoore 35203.

Note that the closed sets of a topology form a Moore collection, so a topology is a set, and this remark also applies to many other families of sets (namely, as soon as the whole set is required to be a set of the family, then the associated kind of family has no proper classes: that this condition suffices to impose sethood can be seen in this proof, which relies crucially on uniexr 7591).

Note: if, in the above predicate, we substitute 𝒫 𝑋 for 𝐴, then the last ∈ 𝒫 𝑋 could be weakened to 𝑋, and then the predicate would be obviously satisfied since 𝒫 𝑋 = 𝑋 (unipw 5360) , making 𝒫 𝑋 a Moore collection in this weaker sense, for any class 𝑋, even proper, but the addition of this single case does not add anything interesting. Instead, we have the biconditional bj-discrmoore 35209. (Contributed by BJ, 8-Dec-2021.)

Assertion
Ref Expression
bj-mooreset (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴𝐴 ∈ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-mooreset
StepHypRef Expression
1 0elpw 5273 . . 3 ∅ ∈ 𝒫 𝐴
2 rint0 4918 . . . . 5 (𝑥 = ∅ → ( 𝐴 𝑥) = 𝐴)
32eleq1d 2823 . . . 4 (𝑥 = ∅ → (( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
43rspcv 3547 . . 3 (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
51, 4ax-mp 5 . 2 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴)
6 uniexr 7591 . 2 ( 𝐴𝐴𝐴 ∈ V)
75, 6syl 17 1 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cin 3882  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-int 4877
This theorem is referenced by:  bj-ismoore  35203
  Copyright terms: Public domain W3C validator