Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4893 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | velpw 4560 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3943 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3905 𝒫 cpw 4555 ∪ cuni 4860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3445 df-in 3912 df-ss 3922 df-pw 4557 df-uni 4861 |
This theorem is referenced by: uniexr 7684 fipwuni 9292 uniwf 9685 rankuni 9729 rankc2 9737 rankxplim 9745 fin23lem17 10204 axcclem 10323 grurn 10667 istopon 22171 eltg3i 22221 cmpfi 22669 hmphdis 23057 ptcmpfi 23074 fbssfi 23098 mopnfss 23706 pliguhgr 29202 shsspwh 29962 circtopn 32149 hasheuni 32415 issgon 32453 sigaclci 32462 sigagenval 32470 dmsigagen 32474 imambfm 32593 bj-unirel 35378 salgenval 44250 salgenn0 44258 caragensspw 44436 |
Copyright terms: Public domain | W3C validator |