![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4942 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | velpw 4610 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3999 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 df-uni 4913 |
This theorem is referenced by: uniexr 7782 fipwuni 9464 uniwf 9857 rankuni 9901 rankc2 9909 rankxplim 9917 fin23lem17 10376 axcclem 10495 grurn 10839 istopon 22934 eltg3i 22984 cmpfi 23432 hmphdis 23820 ptcmpfi 23837 fbssfi 23861 mopnfss 24469 pliguhgr 30515 shsspwh 31275 circtopn 33798 hasheuni 34066 issgon 34104 sigaclci 34113 sigagenval 34121 dmsigagen 34125 imambfm 34244 bj-unirel 37034 salgenval 46277 salgenn0 46287 caragensspw 46465 |
Copyright terms: Public domain | W3C validator |