Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4868 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | velpw 4535 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3921 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: uniexr 7591 fipwuni 9115 uniwf 9508 rankuni 9552 rankc2 9560 rankxplim 9568 fin23lem17 10025 axcclem 10144 grurn 10488 istopon 21969 eltg3i 22019 cmpfi 22467 hmphdis 22855 ptcmpfi 22872 fbssfi 22896 mopnfss 23504 pliguhgr 28749 shsspwh 29509 circtopn 31689 hasheuni 31953 issgon 31991 sigaclci 32000 sigagenval 32008 dmsigagen 32012 imambfm 32129 bj-unirel 35151 salgenval 43752 salgenn0 43760 caragensspw 43937 |
Copyright terms: Public domain | W3C validator |