Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4871 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | velpw 4538 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3925 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 |
This theorem is referenced by: uniexr 7613 fipwuni 9185 uniwf 9577 rankuni 9621 rankc2 9629 rankxplim 9637 fin23lem17 10094 axcclem 10213 grurn 10557 istopon 22061 eltg3i 22111 cmpfi 22559 hmphdis 22947 ptcmpfi 22964 fbssfi 22988 mopnfss 23596 pliguhgr 28848 shsspwh 29608 circtopn 31787 hasheuni 32053 issgon 32091 sigaclci 32100 sigagenval 32108 dmsigagen 32112 imambfm 32229 bj-unirel 35224 salgenval 43862 salgenn0 43870 caragensspw 44047 |
Copyright terms: Public domain | W3C validator |