| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4889 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | velpw 4554 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 4 | 3 | ssriv 3934 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-pw 4551 df-uni 4859 |
| This theorem is referenced by: uniexr 7702 fipwuni 9317 uniwf 9719 rankuni 9763 rankc2 9771 rankxplim 9779 fin23lem17 10236 axcclem 10355 grurn 10699 istopon 22828 eltg3i 22877 cmpfi 23324 hmphdis 23712 ptcmpfi 23729 fbssfi 23753 mopnfss 24359 pliguhgr 30468 shsspwh 31228 circtopn 33871 hasheuni 34119 issgon 34157 sigaclci 34166 sigagenval 34174 dmsigagen 34178 imambfm 34296 bj-unirel 37116 salgenval 46443 salgenn0 46453 caragensspw 46631 |
| Copyright terms: Public domain | W3C validator |