| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4936 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | velpw 4604 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 4 | 3 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 ∪ cuni 4906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 df-pw 4601 df-uni 4907 |
| This theorem is referenced by: uniexr 7784 fipwuni 9467 uniwf 9860 rankuni 9904 rankc2 9912 rankxplim 9920 fin23lem17 10379 axcclem 10498 grurn 10842 istopon 22919 eltg3i 22969 cmpfi 23417 hmphdis 23805 ptcmpfi 23822 fbssfi 23846 mopnfss 24454 pliguhgr 30506 shsspwh 31266 circtopn 33837 hasheuni 34087 issgon 34125 sigaclci 34134 sigagenval 34142 dmsigagen 34146 imambfm 34265 bj-unirel 37053 salgenval 46341 salgenn0 46351 caragensspw 46529 |
| Copyright terms: Public domain | W3C validator |