| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4918 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | velpw 4585 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 4 | 3 | ssriv 3967 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 df-uni 4889 |
| This theorem is referenced by: uniexr 7762 fipwuni 9443 uniwf 9838 rankuni 9882 rankc2 9890 rankxplim 9898 fin23lem17 10357 axcclem 10476 grurn 10820 istopon 22855 eltg3i 22904 cmpfi 23351 hmphdis 23739 ptcmpfi 23756 fbssfi 23780 mopnfss 24387 pliguhgr 30472 shsspwh 31232 circtopn 33873 hasheuni 34121 issgon 34159 sigaclci 34168 sigagenval 34176 dmsigagen 34180 imambfm 34299 bj-unirel 37074 salgenval 46330 salgenn0 46340 caragensspw 46518 |
| Copyright terms: Public domain | W3C validator |