| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4891 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | velpw 4558 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 4 | 3 | ssriv 3941 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 df-uni 4862 |
| This theorem is referenced by: uniexr 7703 fipwuni 9335 uniwf 9734 rankuni 9778 rankc2 9786 rankxplim 9794 fin23lem17 10251 axcclem 10370 grurn 10714 istopon 22815 eltg3i 22864 cmpfi 23311 hmphdis 23699 ptcmpfi 23716 fbssfi 23740 mopnfss 24347 pliguhgr 30448 shsspwh 31208 circtopn 33803 hasheuni 34051 issgon 34089 sigaclci 34098 sigagenval 34106 dmsigagen 34110 imambfm 34229 bj-unirel 37024 salgenval 46303 salgenn0 46313 caragensspw 46491 |
| Copyright terms: Public domain | W3C validator |