MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuni Structured version   Visualization version   GIF version

Theorem pwuni 4948
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem pwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4940 . . 3 (𝑥𝐴𝑥 𝐴)
2 velpw 4608 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
31, 2sylibr 233 . 2 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
43ssriv 3981 1 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wss 3945  𝒫 cpw 4603   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-ss 3962  df-pw 4605  df-uni 4909
This theorem is referenced by:  uniexr  7764  fipwuni  9449  uniwf  9842  rankuni  9886  rankc2  9894  rankxplim  9902  fin23lem17  10361  axcclem  10480  grurn  10824  istopon  22845  eltg3i  22895  cmpfi  23343  hmphdis  23731  ptcmpfi  23748  fbssfi  23772  mopnfss  24380  pliguhgr  30353  shsspwh  31113  circtopn  33525  hasheuni  33791  issgon  33829  sigaclci  33838  sigagenval  33846  dmsigagen  33850  imambfm  33969  bj-unirel  36617  salgenval  45789  salgenn0  45799  caragensspw  45977
  Copyright terms: Public domain W3C validator