![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4774 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | selpw 4460 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 235 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3893 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 ⊆ wss 3859 𝒫 cpw 4453 ∪ cuni 4745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-in 3866 df-ss 3874 df-pw 4455 df-uni 4746 |
This theorem is referenced by: uniexr 7342 fipwuni 8736 uniwf 9094 rankuni 9138 rankc2 9146 rankxplim 9154 fin23lem17 9606 axcclem 9725 grurn 10069 istopon 21204 eltg3i 21253 cmpfi 21700 hmphdis 22088 ptcmpfi 22105 fbssfi 22129 mopnfss 22736 pliguhgr 27954 shsspwh 28714 circtopn 30718 hasheuni 30961 issgon 30999 sigaclci 31008 sigagenval 31016 dmsigagen 31020 imambfm 31137 salgenval 42148 salgenn0 42156 caragensspw 42333 |
Copyright terms: Public domain | W3C validator |