| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4904 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | velpw 4571 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 4 | 3 | ssriv 3953 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 df-uni 4875 |
| This theorem is referenced by: uniexr 7742 fipwuni 9384 uniwf 9779 rankuni 9823 rankc2 9831 rankxplim 9839 fin23lem17 10298 axcclem 10417 grurn 10761 istopon 22806 eltg3i 22855 cmpfi 23302 hmphdis 23690 ptcmpfi 23707 fbssfi 23731 mopnfss 24338 pliguhgr 30422 shsspwh 31182 circtopn 33834 hasheuni 34082 issgon 34120 sigaclci 34129 sigagenval 34137 dmsigagen 34141 imambfm 34260 bj-unirel 37046 salgenval 46326 salgenn0 46336 caragensspw 46514 |
| Copyright terms: Public domain | W3C validator |