MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuni Structured version   Visualization version   GIF version

Theorem pwuni 4878
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem pwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4871 . . 3 (𝑥𝐴𝑥 𝐴)
2 velpw 4538 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
31, 2sylibr 233 . 2 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
43ssriv 3925 1 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  uniexr  7613  fipwuni  9185  uniwf  9577  rankuni  9621  rankc2  9629  rankxplim  9637  fin23lem17  10094  axcclem  10213  grurn  10557  istopon  22061  eltg3i  22111  cmpfi  22559  hmphdis  22947  ptcmpfi  22964  fbssfi  22988  mopnfss  23596  pliguhgr  28848  shsspwh  29608  circtopn  31787  hasheuni  32053  issgon  32091  sigaclci  32100  sigagenval  32108  dmsigagen  32112  imambfm  32229  bj-unirel  35224  salgenval  43862  salgenn0  43870  caragensspw  44047
  Copyright terms: Public domain W3C validator