MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuni Structured version   Visualization version   GIF version

Theorem pwuni 4926
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem pwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4918 . . 3 (𝑥𝐴𝑥 𝐴)
2 velpw 4585 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
31, 2sylibr 234 . 2 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
43ssriv 3967 1 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3931  𝒫 cpw 4580   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-pw 4582  df-uni 4889
This theorem is referenced by:  uniexr  7762  fipwuni  9443  uniwf  9838  rankuni  9882  rankc2  9890  rankxplim  9898  fin23lem17  10357  axcclem  10476  grurn  10820  istopon  22855  eltg3i  22904  cmpfi  23351  hmphdis  23739  ptcmpfi  23756  fbssfi  23780  mopnfss  24387  pliguhgr  30472  shsspwh  31232  circtopn  33873  hasheuni  34121  issgon  34159  sigaclci  34168  sigagenval  34176  dmsigagen  34180  imambfm  34299  bj-unirel  37074  salgenval  46330  salgenn0  46340  caragensspw  46518
  Copyright terms: Public domain W3C validator