![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4961 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | velpw 4627 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 4012 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 |
This theorem is referenced by: uniexr 7798 fipwuni 9495 uniwf 9888 rankuni 9932 rankc2 9940 rankxplim 9948 fin23lem17 10407 axcclem 10526 grurn 10870 istopon 22939 eltg3i 22989 cmpfi 23437 hmphdis 23825 ptcmpfi 23842 fbssfi 23866 mopnfss 24474 pliguhgr 30518 shsspwh 31278 circtopn 33783 hasheuni 34049 issgon 34087 sigaclci 34096 sigagenval 34104 dmsigagen 34108 imambfm 34227 bj-unirel 37017 salgenval 46242 salgenn0 46252 caragensspw 46430 |
Copyright terms: Public domain | W3C validator |