MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuassen Structured version   Visualization version   GIF version

Theorem djuassen 9865
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 5226 . . . . . 6 ∅ ∈ V
2 simp1 1134 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
3 xpsnen2g 8805 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
41, 2, 3sylancr 586 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐴) ≈ 𝐴)
54ensymd 8746 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴 ≈ ({∅} × 𝐴))
6 1oex 8280 . . . . . . 7 1o ∈ V
7 snex 5349 . . . . . . . 8 {∅} ∈ V
8 simp2 1135 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
9 xpexg 7578 . . . . . . . 8 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
107, 8, 9sylancr 586 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
11 xpsnen2g 8805 . . . . . . 7 ((1o ∈ V ∧ ({∅} × 𝐵) ∈ V) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
126, 10, 11sylancr 586 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
13 xpsnen2g 8805 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
141, 8, 13sylancr 586 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
15 entr 8747 . . . . . 6 ((({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵) ∧ ({∅} × 𝐵) ≈ 𝐵) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1612, 14, 15syl2anc 583 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1716ensymd 8746 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({1o} × ({∅} × 𝐵)))
18 xp01disjl 8288 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅
1918a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅)
20 djuenun 9857 . . . 4 ((𝐴 ≈ ({∅} × 𝐴) ∧ 𝐵 ≈ ({1o} × ({∅} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
215, 17, 19, 20syl3anc 1369 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
22 snex 5349 . . . . . . 7 {1o} ∈ V
23 simp3 1136 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
24 xpexg 7578 . . . . . . 7 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
2522, 23, 24sylancr 586 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
26 xpsnen2g 8805 . . . . . 6 ((1o ∈ V ∧ ({1o} × 𝐶) ∈ V) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
276, 25, 26sylancr 586 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
28 xpsnen2g 8805 . . . . . 6 ((1o ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
296, 23, 28sylancr 586 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
30 entr 8747 . . . . 5 ((({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶) ∧ ({1o} × 𝐶) ≈ 𝐶) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3127, 29, 30syl2anc 583 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3231ensymd 8746 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × ({1o} × 𝐶)))
33 indir 4206 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))))
34 xp01disjl 8288 . . . . . . 7 (({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) = ∅
35 xp01disjl 8288 . . . . . . . . 9 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
3635xpeq2i 5607 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ({1o} × ∅)
37 xpindi 5731 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))
38 xp0 6050 . . . . . . . 8 ({1o} × ∅) = ∅
3936, 37, 383eqtr3i 2774 . . . . . . 7 (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4034, 39uneq12i 4091 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = (∅ ∪ ∅)
41 un0 4321 . . . . . 6 (∅ ∪ ∅) = ∅
4240, 41eqtri 2766 . . . . 5 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = ∅
4333, 42eqtri 2766 . . . 4 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4443a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅)
45 djuenun 9857 . . 3 (((𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∧ 𝐶 ≈ ({1o} × ({1o} × 𝐶)) ∧ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
4621, 32, 44, 45syl3anc 1369 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
47 df-dju 9590 . . . . . 6 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
4847xpeq2i 5607 . . . . 5 ({1o} × (𝐵𝐶)) = ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
49 xpundi 5646 . . . . 5 ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5048, 49eqtri 2766 . . . 4 ({1o} × (𝐵𝐶)) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5150uneq2i 4090 . . 3 (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
52 df-dju 9590 . . 3 (𝐴 ⊔ (𝐵𝐶)) = (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶)))
53 unass 4096 . . 3 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
5451, 52, 533eqtr4i 2776 . 2 (𝐴 ⊔ (𝐵𝐶)) = ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶)))
5546, 54breqtrrdi 5112 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  1oc1o 8260  cen 8688  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dju 9590
This theorem is referenced by:  nnadju  9884
  Copyright terms: Public domain W3C validator