MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuassen Structured version   Visualization version   GIF version

Theorem djuassen 9593
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 5178 . . . . . 6 ∅ ∈ V
2 simp1 1133 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
3 xpsnen2g 8597 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
41, 2, 3sylancr 590 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐴) ≈ 𝐴)
54ensymd 8547 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴 ≈ ({∅} × 𝐴))
6 1oex 8097 . . . . . . 7 1o ∈ V
7 snex 5300 . . . . . . . 8 {∅} ∈ V
8 simp2 1134 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
9 xpexg 7457 . . . . . . . 8 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
107, 8, 9sylancr 590 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
11 xpsnen2g 8597 . . . . . . 7 ((1o ∈ V ∧ ({∅} × 𝐵) ∈ V) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
126, 10, 11sylancr 590 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵))
13 xpsnen2g 8597 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
141, 8, 13sylancr 590 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
15 entr 8548 . . . . . 6 ((({1o} × ({∅} × 𝐵)) ≈ ({∅} × 𝐵) ∧ ({∅} × 𝐵) ≈ 𝐵) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1612, 14, 15syl2anc 587 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({∅} × 𝐵)) ≈ 𝐵)
1716ensymd 8547 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({1o} × ({∅} × 𝐵)))
18 xp01disjl 8108 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅
1918a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅)
20 djuenun 9585 . . . 4 ((𝐴 ≈ ({∅} × 𝐴) ∧ 𝐵 ≈ ({1o} × ({∅} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × ({∅} × 𝐵))) = ∅) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
215, 17, 19, 20syl3anc 1368 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))))
22 snex 5300 . . . . . . 7 {1o} ∈ V
23 simp3 1135 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
24 xpexg 7457 . . . . . . 7 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
2522, 23, 24sylancr 590 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
26 xpsnen2g 8597 . . . . . 6 ((1o ∈ V ∧ ({1o} × 𝐶) ∈ V) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
276, 25, 26sylancr 590 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶))
28 xpsnen2g 8597 . . . . . 6 ((1o ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
296, 23, 28sylancr 590 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
30 entr 8548 . . . . 5 ((({1o} × ({1o} × 𝐶)) ≈ ({1o} × 𝐶) ∧ ({1o} × 𝐶) ≈ 𝐶) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3127, 29, 30syl2anc 587 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × ({1o} × 𝐶)) ≈ 𝐶)
3231ensymd 8547 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × ({1o} × 𝐶)))
33 indir 4205 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))))
34 xp01disjl 8108 . . . . . . 7 (({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) = ∅
35 xp01disjl 8108 . . . . . . . . 9 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
3635xpeq2i 5550 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ({1o} × ∅)
37 xpindi 5672 . . . . . . . 8 ({1o} × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))
38 xp0 5986 . . . . . . . 8 ({1o} × ∅) = ∅
3936, 37, 383eqtr3i 2832 . . . . . . 7 (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4034, 39uneq12i 4091 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = (∅ ∪ ∅)
41 un0 4301 . . . . . 6 (∅ ∪ ∅) = ∅
4240, 41eqtri 2824 . . . . 5 ((({∅} × 𝐴) ∩ ({1o} × ({1o} × 𝐶))) ∪ (({1o} × ({∅} × 𝐵)) ∩ ({1o} × ({1o} × 𝐶)))) = ∅
4333, 42eqtri 2824 . . . 4 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅
4443a1i 11 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅)
45 djuenun 9585 . . 3 (((𝐴𝐵) ≈ (({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∧ 𝐶 ≈ ({1o} × ({1o} × 𝐶)) ∧ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∩ ({1o} × ({1o} × 𝐶))) = ∅) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
4621, 32, 44, 45syl3anc 1368 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))))
47 df-dju 9318 . . . . . 6 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
4847xpeq2i 5550 . . . . 5 ({1o} × (𝐵𝐶)) = ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
49 xpundi 5588 . . . . 5 ({1o} × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5048, 49eqtri 2824 . . . 4 ({1o} × (𝐵𝐶)) = (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶)))
5150uneq2i 4090 . . 3 (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
52 df-dju 9318 . . 3 (𝐴 ⊔ (𝐵𝐶)) = (({∅} × 𝐴) ∪ ({1o} × (𝐵𝐶)))
53 unass 4096 . . 3 ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶))) = (({∅} × 𝐴) ∪ (({1o} × ({∅} × 𝐵)) ∪ ({1o} × ({1o} × 𝐶))))
5451, 52, 533eqtr4i 2834 . 2 (𝐴 ⊔ (𝐵𝐶)) = ((({∅} × 𝐴) ∪ ({1o} × ({∅} × 𝐵))) ∪ ({1o} × ({1o} × 𝐶)))
5546, 54breqtrrdi 5075 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  Vcvv 3444  cun 3882  cin 3883  c0 4246  {csn 4528   class class class wbr 5033   × cxp 5521  1oc1o 8082  cen 8493  cdju 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-1st 7675  df-2nd 7676  df-1o 8089  df-er 8276  df-en 8497  df-dju 9318
This theorem is referenced by:  nnadju  9612
  Copyright terms: Public domain W3C validator