MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddasslem2 Structured version   Visualization version   GIF version

Theorem naddasslem2 8751
Description: Lemma for naddass 8752. Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddasslem2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = {𝑥 ∈ On ∣ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑥   𝐵,𝑎,𝑏,𝑐,𝑥   𝐶,𝑎,𝑏,𝑐,𝑥

Proof of Theorem naddasslem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On)
2 naddcl 8733 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
323adant1 1130 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
4 intmin 4992 . . . . 5 (𝐴 ∈ On → {𝑎 ∈ On ∣ 𝐴𝑎} = 𝐴)
54eqcomd 2746 . . . 4 (𝐴 ∈ On → 𝐴 = {𝑎 ∈ On ∣ 𝐴𝑎})
653ad2ant1 1133 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 = {𝑎 ∈ On ∣ 𝐴𝑎})
7 naddov3 8736 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = {𝑝 ∈ On ∣ (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))) ⊆ 𝑝})
873adant1 1130 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = {𝑝 ∈ On ∣ (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))) ⊆ 𝑝})
91, 3, 6, 8naddunif 8749 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = {𝑥 ∈ On ∣ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥})
10 3anass 1095 . . . . . 6 ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥)))
11 unss 4213 . . . . . . . 8 ((( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥)
12 ancom 460 . . . . . . . 8 ((( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥))
13 xpundi 5768 . . . . . . . . . . 11 ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))) = (({𝐴} × ( +no “ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))
1413imaeq2i 6087 . . . . . . . . . 10 ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) = ( +no “ (({𝐴} × ( +no “ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶})))))
15 imaundi 6181 . . . . . . . . . 10 ( +no “ (({𝐴} × ( +no “ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) = (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))))
1614, 15eqtri 2768 . . . . . . . . 9 ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) = (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))))
1716sseq1i 4037 . . . . . . . 8 (( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥 ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥)
1811, 12, 173bitr4i 303 . . . . . . 7 ((( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥)
1918anbi2i 622 . . . . . 6 ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥)) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥))
20 unss 4213 . . . . . 6 ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥)
2110, 19, 203bitrri 298 . . . . 5 ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥 ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥))
22 naddfn 8731 . . . . . . . . 9 +no Fn (On × On)
23 fnfun 6679 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
2422, 23ax-mp 5 . . . . . . . 8 Fun +no
25 onss 7820 . . . . . . . . . . 11 (𝐴 ∈ On → 𝐴 ⊆ On)
26253ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On)
273adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐵 +no 𝐶) ∈ On)
2827snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐵 +no 𝐶)} ⊆ On)
29 xpss12 5715 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ {(𝐵 +no 𝐶)} ⊆ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ (On × On))
3026, 28, 29syl2an2r 684 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ (On × On))
3122fndmi 6683 . . . . . . . . 9 dom +no = (On × On)
3230, 31sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ dom +no )
33 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ (𝐴 × {(𝐵 +no 𝐶)}) ⊆ dom +no ) → (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎𝐴𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥))
3424, 32, 33sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎𝐴𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥))
35 ovex 7481 . . . . . . . . 9 (𝐵 +no 𝐶) ∈ V
36 oveq2 7456 . . . . . . . . . 10 (𝑝 = (𝐵 +no 𝐶) → (𝑎 +no 𝑝) = (𝑎 +no (𝐵 +no 𝐶)))
3736eleq1d 2829 . . . . . . . . 9 (𝑝 = (𝐵 +no 𝐶) → ((𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥))
3835, 37ralsn 4705 . . . . . . . 8 (∀𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥)
3938ralbii 3099 . . . . . . 7 (∀𝑎𝐴𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥)
4034, 39bitrdi 287 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥))
41 simpl1 1191 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
4241snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On)
43 imassrn 6100 . . . . . . . . . . 11 ( +no “ (𝐵 × {𝐶})) ⊆ ran +no
44 naddf 8737 . . . . . . . . . . . 12 +no :(On × On)⟶On
45 frn 6754 . . . . . . . . . . . 12 ( +no :(On × On)⟶On → ran +no ⊆ On)
4644, 45ax-mp 5 . . . . . . . . . . 11 ran +no ⊆ On
4743, 46sstri 4018 . . . . . . . . . 10 ( +no “ (𝐵 × {𝐶})) ⊆ On
48 xpss12 5715 . . . . . . . . . 10 (({𝐴} ⊆ On ∧ ( +no “ (𝐵 × {𝐶})) ⊆ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ (On × On))
4942, 47, 48sylancl 585 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ (On × On))
5049, 31sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ dom +no )
51 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ dom +no ) → (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥))
5224, 50, 51sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥))
53 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 +no 𝑝) = (𝐴 +no 𝑝))
5453eleq1d 2829 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝐴 +no 𝑝) ∈ 𝑥))
5554ralbidv 3184 . . . . . . . . 9 (𝑎 = 𝐴 → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥))
5655ralsng 4697 . . . . . . . 8 (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥))
5741, 56syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥))
58 onss 7820 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
59583ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On)
60 simpl3 1193 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On)
6160snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On)
62 xpss12 5715 . . . . . . . . . 10 ((𝐵 ⊆ On ∧ {𝐶} ⊆ On) → (𝐵 × {𝐶}) ⊆ (On × On))
6359, 61, 62syl2an2r 684 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐵 × {𝐶}) ⊆ (On × On))
64 oveq2 7456 . . . . . . . . . . 11 (𝑝 = (𝑏 +no 𝑐) → (𝐴 +no 𝑝) = (𝐴 +no (𝑏 +no 𝑐)))
6564eleq1d 2829 . . . . . . . . . 10 (𝑝 = (𝑏 +no 𝑐) → ((𝐴 +no 𝑝) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥))
6665imaeqalov 7689 . . . . . . . . 9 (( +no Fn (On × On) ∧ (𝐵 × {𝐶}) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏𝐵𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥))
6722, 63, 66sylancr 586 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏𝐵𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥))
68 oveq2 7456 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑏 +no 𝑐) = (𝑏 +no 𝐶))
6968oveq2d 7464 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝐶)))
7069eleq1d 2829 . . . . . . . . . . 11 (𝑐 = 𝐶 → ((𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
7170ralsng 4697 . . . . . . . . . 10 (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
7260, 71syl 17 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
7372ralbidv 3184 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑏𝐵𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
7467, 73bitrd 279 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
7552, 57, 743bitrd 305 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ↔ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥))
76 imassrn 6100 . . . . . . . . . . 11 ( +no “ ({𝐵} × 𝐶)) ⊆ ran +no
7776, 46sstri 4018 . . . . . . . . . 10 ( +no “ ({𝐵} × 𝐶)) ⊆ On
78 xpss12 5715 . . . . . . . . . 10 (({𝐴} ⊆ On ∧ ( +no “ ({𝐵} × 𝐶)) ⊆ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ (On × On))
7942, 77, 78sylancl 585 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ (On × On))
8079, 31sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ dom +no )
81 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ dom +no ) → (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥))
8224, 80, 81sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥))
8354ralbidv 3184 . . . . . . . . 9 (𝑎 = 𝐴 → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥))
8483ralsng 4697 . . . . . . . 8 (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥))
8541, 84syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥))
86 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
8786snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On)
88 onss 7820 . . . . . . . . . . . 12 (𝐶 ∈ On → 𝐶 ⊆ On)
89883ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On)
9089adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On)
91 xpss12 5715 . . . . . . . . . 10 (({𝐵} ⊆ On ∧ 𝐶 ⊆ On) → ({𝐵} × 𝐶) ⊆ (On × On))
9287, 90, 91syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐵} × 𝐶) ⊆ (On × On))
9365imaeqalov 7689 . . . . . . . . 9 (( +no Fn (On × On) ∧ ({𝐵} × 𝐶) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ {𝐵}∀𝑐𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥))
9422, 92, 93sylancr 586 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ {𝐵}∀𝑐𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥))
95 oveq1 7455 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐))
9695oveq2d 7464 . . . . . . . . . . . 12 (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐)))
9796eleq1d 2829 . . . . . . . . . . 11 (𝑏 = 𝐵 → ((𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
9897ralbidv 3184 . . . . . . . . . 10 (𝑏 = 𝐵 → (∀𝑐𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
9998ralsng 4697 . . . . . . . . 9 (𝐵 ∈ On → (∀𝑏 ∈ {𝐵}∀𝑐𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
10086, 99syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ {𝐵}∀𝑐𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
10194, 100bitrd 279 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
10282, 85, 1013bitrd 305 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ↔ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))
10340, 75, 1023anbi123d 1436 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)))
10421, 103bitrid 283 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥 ↔ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)))
105104rabbidva 3450 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)})
106105inteqd 4975 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)})
1079, 106eqtrd 2780 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = {𝑥 ∈ On ∣ (∀𝑎𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cun 3974  wss 3976  {csn 4648   cint 4970   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  wf 6569  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  naddass  8752
  Copyright terms: Public domain W3C validator