| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On) |
| 2 | | naddcl 8715 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
| 3 | 2 | 3adant1 1131 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
| 4 | | intmin 4968 |
. . . . 5
⊢ (𝐴 ∈ On → ∩ {𝑎
∈ On ∣ 𝐴 ⊆
𝑎} = 𝐴) |
| 5 | 4 | eqcomd 2743 |
. . . 4
⊢ (𝐴 ∈ On → 𝐴 = ∩
{𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) |
| 6 | 5 | 3ad2ant1 1134 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 = ∩
{𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎}) |
| 7 | | naddov3 8718 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑝 ∈ On ∣ (( +no
“ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))) ⊆ 𝑝}) |
| 8 | 7 | 3adant1 1131 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑝 ∈ On ∣ (( +no
“ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))) ⊆ 𝑝}) |
| 9 | 1, 3, 6, 8 | naddunif 8731 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = ∩ {𝑥 ∈ On ∣ (( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥}) |
| 10 | | 3anass 1095 |
. . . . . 6
⊢ ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥))) |
| 11 | | unss 4190 |
. . . . . . . 8
⊢ ((( +no
“ ({𝐴} × ( +no
“ ({𝐵} × 𝐶)))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥) |
| 12 | | ancom 460 |
. . . . . . . 8
⊢ ((( +no
“ ({𝐴} × ( +no
“ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥)) |
| 13 | | xpundi 5754 |
. . . . . . . . . . 11
⊢ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))) = (({𝐴} × ( +no “ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) |
| 14 | 13 | imaeq2i 6076 |
. . . . . . . . . 10
⊢ ( +no
“ ({𝐴} × (( +no
“ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) = ( +no “ (({𝐴} × ( +no “ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) |
| 15 | | imaundi 6169 |
. . . . . . . . . 10
⊢ ( +no
“ (({𝐴} × ( +no
“ ({𝐵} × 𝐶))) ∪ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) = (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) |
| 16 | 14, 15 | eqtri 2765 |
. . . . . . . . 9
⊢ ( +no
“ ({𝐴} × (( +no
“ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) = (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) |
| 17 | 16 | sseq1i 4012 |
. . . . . . . 8
⊢ (( +no
“ ({𝐴} × (( +no
“ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥 ↔ (( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ∪ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥) |
| 18 | 11, 12, 17 | 3bitr4i 303 |
. . . . . . 7
⊢ ((( +no
“ ({𝐴} × ( +no
“ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥) |
| 19 | 18 | anbi2i 623 |
. . . . . 6
⊢ ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ (( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥)) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥)) |
| 20 | | unss 4190 |
. . . . . 6
⊢ ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶}))))) ⊆ 𝑥) ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥) |
| 21 | 10, 19, 20 | 3bitrri 298 |
. . . . 5
⊢ ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥 ↔ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥)) |
| 22 | | naddfn 8713 |
. . . . . . . . 9
⊢ +no Fn
(On × On) |
| 23 | | fnfun 6668 |
. . . . . . . . 9
⊢ ( +no Fn
(On × On) → Fun +no ) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ Fun
+no |
| 25 | | onss 7805 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 26 | 25 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
| 27 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
| 28 | 27 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐵 +no 𝐶)} ⊆ On) |
| 29 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ {(𝐵 +no 𝐶)} ⊆ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ (On ×
On)) |
| 30 | 26, 28, 29 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ (On ×
On)) |
| 31 | 22 | fndmi 6672 |
. . . . . . . . 9
⊢ dom +no =
(On × On) |
| 32 | 30, 31 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {(𝐵 +no 𝐶)}) ⊆ dom +no ) |
| 33 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ (𝐴 × {(𝐵 +no 𝐶)}) ⊆ dom +no ) → (( +no “
(𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥)) |
| 34 | 24, 32, 33 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥)) |
| 35 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝐵 +no 𝐶) ∈ V |
| 36 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑝 = (𝐵 +no 𝐶) → (𝑎 +no 𝑝) = (𝑎 +no (𝐵 +no 𝐶))) |
| 37 | 36 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑝 = (𝐵 +no 𝐶) → ((𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥)) |
| 38 | 35, 37 | ralsn 4681 |
. . . . . . . 8
⊢
(∀𝑝 ∈
{(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥) |
| 39 | 38 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐴 ∀𝑝 ∈ {(𝐵 +no 𝐶)} (𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥) |
| 40 | 34, 39 | bitrdi 287 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ↔ ∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥)) |
| 41 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
| 42 | 41 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On) |
| 43 | | imassrn 6089 |
. . . . . . . . . . 11
⊢ ( +no
“ (𝐵 × {𝐶})) ⊆ ran
+no |
| 44 | | naddf 8719 |
. . . . . . . . . . . 12
⊢ +no :(On
× On)⟶On |
| 45 | | frn 6743 |
. . . . . . . . . . . 12
⊢ ( +no
:(On × On)⟶On → ran +no ⊆ On) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran +no
⊆ On |
| 47 | 43, 46 | sstri 3993 |
. . . . . . . . . 10
⊢ ( +no
“ (𝐵 × {𝐶})) ⊆ On |
| 48 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({𝐴} ⊆ On ∧ ( +no “
(𝐵 × {𝐶})) ⊆ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ (On ×
On)) |
| 49 | 42, 47, 48 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ (On ×
On)) |
| 50 | 49, 31 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ (𝐵 × {𝐶}))) ⊆ dom +no ) |
| 51 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ ({𝐴} × ( +no
“ (𝐵 × {𝐶}))) ⊆ dom +no ) → ((
+no “ ({𝐴} × (
+no “ (𝐵 ×
{𝐶})))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥)) |
| 52 | 24, 50, 51 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × ( +no
“ (𝐵 × {𝐶})))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥)) |
| 53 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑝) = (𝐴 +no 𝑝)) |
| 54 | 53 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((𝑎 +no 𝑝) ∈ 𝑥 ↔ (𝐴 +no 𝑝) ∈ 𝑥)) |
| 55 | 54 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 56 | 55 | ralsng 4675 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 57 | 41, 56 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 58 | | onss 7805 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 59 | 58 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On) |
| 60 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On) |
| 61 | 60 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On) |
| 62 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((𝐵 ⊆ On ∧ {𝐶} ⊆ On) → (𝐵 × {𝐶}) ⊆ (On × On)) |
| 63 | 59, 61, 62 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐵 × {𝐶}) ⊆ (On × On)) |
| 64 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑏 +no 𝑐) → (𝐴 +no 𝑝) = (𝐴 +no (𝑏 +no 𝑐))) |
| 65 | 64 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑏 +no 𝑐) → ((𝐴 +no 𝑝) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥)) |
| 66 | 65 | imaeqalov 7672 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ (𝐵
× {𝐶}) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥)) |
| 67 | 22, 63, 66 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥)) |
| 68 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝐶 → (𝑏 +no 𝑐) = (𝑏 +no 𝐶)) |
| 69 | 68 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝐶))) |
| 70 | 69 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → ((𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 71 | 70 | ralsng 4675 |
. . . . . . . . . 10
⊢ (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 72 | 60, 71 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 73 | 72 | ralbidv 3178 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑏 ∈ 𝐵 ∀𝑐 ∈ {𝐶} (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 74 | 67, 73 | bitrd 279 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐵 × {𝐶}))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 75 | 52, 57, 74 | 3bitrd 305 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × ( +no
“ (𝐵 × {𝐶})))) ⊆ 𝑥 ↔ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥)) |
| 76 | | imassrn 6089 |
. . . . . . . . . . 11
⊢ ( +no
“ ({𝐵} × 𝐶)) ⊆ ran
+no |
| 77 | 76, 46 | sstri 3993 |
. . . . . . . . . 10
⊢ ( +no
“ ({𝐵} × 𝐶)) ⊆ On |
| 78 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({𝐴} ⊆ On ∧ ( +no “
({𝐵} × 𝐶)) ⊆ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ (On ×
On)) |
| 79 | 42, 77, 78 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ (On ×
On)) |
| 80 | 79, 31 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × ( +no “ ({𝐵} × 𝐶))) ⊆ dom +no ) |
| 81 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ ({𝐴} × ( +no
“ ({𝐵} × 𝐶))) ⊆ dom +no ) → ((
+no “ ({𝐴} × (
+no “ ({𝐵} ×
𝐶)))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥)) |
| 82 | 24, 80, 81 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × ( +no
“ ({𝐵} × 𝐶)))) ⊆ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥)) |
| 83 | 54 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 84 | 83 | ralsng 4675 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 85 | 41, 84 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ {𝐴}∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝑎 +no 𝑝) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥)) |
| 86 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On) |
| 87 | 86 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On) |
| 88 | | onss 7805 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
| 89 | 88 | 3ad2ant3 1136 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On) |
| 90 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On) |
| 91 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({𝐵} ⊆ On ∧ 𝐶 ⊆ On) → ({𝐵} × 𝐶) ⊆ (On × On)) |
| 92 | 87, 90, 91 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐵} × 𝐶) ⊆ (On × On)) |
| 93 | 65 | imaeqalov 7672 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ ({𝐵}
× 𝐶) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ {𝐵}∀𝑐 ∈ 𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥)) |
| 94 | 22, 92, 93 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑏 ∈ {𝐵}∀𝑐 ∈ 𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥)) |
| 95 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐)) |
| 96 | 95 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐))) |
| 97 | 96 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → ((𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 98 | 97 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ 𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 99 | 98 | ralsng 4675 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → (∀𝑏 ∈ {𝐵}∀𝑐 ∈ 𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 100 | 86, 99 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑏 ∈ {𝐵}∀𝑐 ∈ 𝐶 (𝐴 +no (𝑏 +no 𝑐)) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 101 | 94, 100 | bitrd 279 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐵} × 𝐶))(𝐴 +no 𝑝) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 102 | 82, 85, 101 | 3bitrd 305 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × ( +no
“ ({𝐵} × 𝐶)))) ⊆ 𝑥 ↔ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)) |
| 103 | 40, 75, 102 | 3anbi123d 1438 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ (𝐵 × {𝐶})))) ⊆ 𝑥 ∧ ( +no “ ({𝐴} × ( +no “ ({𝐵} × 𝐶)))) ⊆ 𝑥) ↔ (∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))) |
| 104 | 21, 103 | bitrid 283 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥 ↔ (∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥))) |
| 105 | 104 | rabbidva 3443 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no
“ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)}) |
| 106 | 105 | inteqd 4951 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ∩ {𝑥
∈ On ∣ (( +no “ (𝐴 × {(𝐵 +no 𝐶)})) ∪ ( +no “ ({𝐴} × (( +no “ ({𝐵} × 𝐶)) ∪ ( +no “ (𝐵 × {𝐶})))))) ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)}) |
| 107 | 9, 106 | eqtrd 2777 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 (𝑎 +no (𝐵 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝐴 +no (𝑏 +no 𝐶)) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 (𝐴 +no (𝐵 +no 𝑐)) ∈ 𝑥)}) |