MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdjuen Structured version   Visualization version   GIF version

Theorem xpdjuen 10140
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 8958 . . . . . 6 (𝐴𝑉𝐴𝐴)
213ad2ant1 1133 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
3 0ex 5265 . . . . . . 7 ∅ ∈ V
4 simp2 1137 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpsnen2g 9039 . . . . . . 7 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
63, 4, 5sylancr 587 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
76ensymd 8979 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵 ≈ ({∅} × 𝐵))
8 xpen 9110 . . . . 5 ((𝐴𝐴𝐵 ≈ ({∅} × 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
92, 7, 8syl2anc 584 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)))
10 1on 8449 . . . . . . 7 1o ∈ On
11 simp3 1138 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
12 xpsnen2g 9039 . . . . . . 7 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1310, 11, 12sylancr 587 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
1413ensymd 8979 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶 ≈ ({1o} × 𝐶))
15 xpen 9110 . . . . 5 ((𝐴𝐴𝐶 ≈ ({1o} × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
162, 14, 15syl2anc 584 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)))
17 xp01disjl 8459 . . . . . . 7 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1817xpeq2i 5668 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = (𝐴 × ∅)
19 xpindi 5800 . . . . . 6 (𝐴 × (({∅} × 𝐵) ∩ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶)))
20 xp0 6134 . . . . . 6 (𝐴 × ∅) = ∅
2118, 19, 203eqtr3i 2761 . . . . 5 ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅
2221a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅)
23 djuenun 10131 . . . 4 (((𝐴 × 𝐵) ≈ (𝐴 × ({∅} × 𝐵)) ∧ (𝐴 × 𝐶) ≈ (𝐴 × ({1o} × 𝐶)) ∧ ((𝐴 × ({∅} × 𝐵)) ∩ (𝐴 × ({1o} × 𝐶))) = ∅) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
249, 16, 22, 23syl3anc 1373 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶))))
25 df-dju 9861 . . . . 5 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
2625xpeq2i 5668 . . . 4 (𝐴 × (𝐵𝐶)) = (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
27 xpundi 5710 . . . 4 (𝐴 × (({∅} × 𝐵) ∪ ({1o} × 𝐶))) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2826, 27eqtri 2753 . . 3 (𝐴 × (𝐵𝐶)) = ((𝐴 × ({∅} × 𝐵)) ∪ (𝐴 × ({1o} × 𝐶)))
2924, 28breqtrrdi 5152 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)) ≈ (𝐴 × (𝐵𝐶)))
3029ensymd 8979 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  cin 3916  c0 4299  {csn 4592   class class class wbr 5110   × cxp 5639  Oncon0 6335  1oc1o 8430  cen 8918  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-dju 9861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator