| Step | Hyp | Ref
| Expression |
| 1 | | df-iun 4993 |
. . 3
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)} |
| 2 | 1 | eleq2i 2833 |
. 2
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝑥, 𝐶〉 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)}) |
| 3 | | opex 5469 |
. . 3
⊢
〈𝑥, 𝐶〉 ∈ V |
| 4 | | df-rex 3071 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) |
| 5 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) |
| 6 | | nfs1v 2156 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑥 ∈ 𝐴 |
| 7 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥{𝑧} |
| 8 | | nfcsb1v 3923 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
| 9 | 7, 8 | nfxp 5718 |
. . . . . . . 8
⊢
Ⅎ𝑥({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) |
| 10 | 9 | nfcri 2897 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) |
| 11 | 6, 10 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) |
| 12 | | sbequ12 2251 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑥 ∈ 𝐴)) |
| 13 | | sneq 4636 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 14 | | csbeq1a 3913 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 15 | 13, 14 | xpeq12d 5716 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) |
| 16 | 15 | eleq2d 2827 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
| 17 | 12, 16 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
| 18 | 5, 11, 17 | cbvexv1 2344 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
| 19 | 4, 18 | bitri 275 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
| 20 | | eleq1 2829 |
. . . . . 6
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
| 21 | 20 | anbi2d 630 |
. . . . 5
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
| 22 | 21 | exbidv 1921 |
. . . 4
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
| 23 | 19, 22 | bitrid 283 |
. . 3
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
| 24 | 3, 23 | elab 3679 |
. 2
⊢
(〈𝑥, 𝐶〉 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)} ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
| 25 | | opelxp 5721 |
. . . . . 6
⊢
(〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) |
| 26 | 25 | anbi2i 623 |
. . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
| 27 | | an12 645 |
. . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
| 28 | | velsn 4642 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) |
| 29 | | equcom 2017 |
. . . . . . 7
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
| 30 | 28, 29 | bitri 275 |
. . . . . 6
⊢ (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥) |
| 31 | 30 | anbi1i 624 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
| 32 | 26, 27, 31 | 3bitri 297 |
. . . 4
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
| 33 | 32 | exbii 1848 |
. . 3
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
| 34 | | sbequ12r 2252 |
. . . . 5
⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 35 | 14 | equcoms 2019 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 36 | 35 | eqcomd 2743 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐵) |
| 37 | 36 | eleq2d 2827 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐶 ∈ 𝐵)) |
| 38 | 34, 37 | anbi12d 632 |
. . . 4
⊢ (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
| 39 | 38 | equsexvw 2004 |
. . 3
⊢
(∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
| 40 | 33, 39 | bitri 275 |
. 2
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
| 41 | 2, 24, 40 | 3bitri 297 |
1
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |