MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp Structured version   Visualization version   GIF version

Theorem opeliunxp 5403
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Proof of Theorem opeliunxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4742 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)}
21eleq2i 2898 . 2 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)})
3 opex 5153 . . 3 𝑥, 𝐶⟩ ∈ V
4 df-rex 3123 . . . . 5 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)))
5 nfv 2015 . . . . . 6 𝑧(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵))
6 nfs1v 2313 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑥𝐴
7 nfcv 2969 . . . . . . . . 9 𝑥{𝑧}
8 nfcsb1v 3773 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
97, 8nfxp 5375 . . . . . . . 8 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
109nfcri 2963 . . . . . . 7 𝑥 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)
116, 10nfan 2004 . . . . . 6 𝑥([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))
12 sbequ12 2288 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
13 sneq 4407 . . . . . . . . 9 (𝑥 = 𝑧 → {𝑥} = {𝑧})
14 csbeq1a 3766 . . . . . . . . 9 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1513, 14xpeq12d 5373 . . . . . . . 8 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
1615eleq2d 2892 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
1712, 16anbi12d 626 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
185, 11, 17cbvexv1 2370 . . . . 5 (∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
194, 18bitri 267 . . . 4 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
20 eleq1 2894 . . . . . 6 (𝑦 = ⟨𝑥, 𝐶⟩ → (𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
2120anbi2d 624 . . . . 5 (𝑦 = ⟨𝑥, 𝐶⟩ → (([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2221exbidv 2022 . . . 4 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2319, 22syl5bb 275 . . 3 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
243, 23elab 3571 . 2 (⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)} ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
25 opelxp 5378 . . . . . 6 (⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵))
2625anbi2i 618 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)))
27 an12 637 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
28 velsn 4413 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
29 equcom 2124 . . . . . . 7 (𝑥 = 𝑧𝑧 = 𝑥)
3028, 29bitri 267 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
3130anbi1i 619 . . . . 5 ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3226, 27, 313bitri 289 . . . 4 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3332exbii 1949 . . 3 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
34 sbequ12r 2289 . . . . 5 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥𝐴𝑥𝐴))
3514equcoms 2126 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3635eqcomd 2831 . . . . . 6 (𝑧 = 𝑥𝑧 / 𝑥𝐵 = 𝐵)
3736eleq2d 2892 . . . . 5 (𝑧 = 𝑥 → (𝐶𝑧 / 𝑥𝐵𝐶𝐵))
3834, 37anbi12d 626 . . . 4 (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵) ↔ (𝑥𝐴𝐶𝐵)))
3938equsexvw 2111 . . 3 (∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4033, 39bitri 267 . 2 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
412, 24, 403bitri 289 1 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1658  wex 1880  [wsb 2069  wcel 2166  {cab 2811  wrex 3118  csb 3757  {csn 4397  cop 4403   ciun 4740   × cxp 5340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-iun 4742  df-opab 4936  df-xp 5348
This theorem is referenced by:  eliunxp  5492  opeliunxp2  5493  opeliunxp2f  7601  gsum2d2lem  18725  gsum2d2  18726  gsumcom2  18727  dprdval  18756  ptbasfi  21755  cnextfun  22238  cnextfvval  22239  cnextf  22240  dvbsss  24065  iunsnima  29977
  Copyright terms: Public domain W3C validator