MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp Structured version   Visualization version   GIF version

Theorem opeliunxp 5756
Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Proof of Theorem opeliunxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4998 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)}
21eleq2i 2831 . 2 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)})
3 opex 5475 . . 3 𝑥, 𝐶⟩ ∈ V
4 df-rex 3069 . . . . 5 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)))
5 nfv 1912 . . . . . 6 𝑧(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵))
6 nfs1v 2154 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑥𝐴
7 nfcv 2903 . . . . . . . . 9 𝑥{𝑧}
8 nfcsb1v 3933 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
97, 8nfxp 5722 . . . . . . . 8 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
109nfcri 2895 . . . . . . 7 𝑥 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)
116, 10nfan 1897 . . . . . 6 𝑥([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))
12 sbequ12 2249 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
13 sneq 4641 . . . . . . . . 9 (𝑥 = 𝑧 → {𝑥} = {𝑧})
14 csbeq1a 3922 . . . . . . . . 9 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1513, 14xpeq12d 5720 . . . . . . . 8 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
1615eleq2d 2825 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
1712, 16anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
185, 11, 17cbvexv1 2343 . . . . 5 (∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
194, 18bitri 275 . . . 4 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
20 eleq1 2827 . . . . . 6 (𝑦 = ⟨𝑥, 𝐶⟩ → (𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
2120anbi2d 630 . . . . 5 (𝑦 = ⟨𝑥, 𝐶⟩ → (([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2221exbidv 1919 . . . 4 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2319, 22bitrid 283 . . 3 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
243, 23elab 3681 . 2 (⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)} ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
25 opelxp 5725 . . . . . 6 (⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵))
2625anbi2i 623 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)))
27 an12 645 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
28 velsn 4647 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
29 equcom 2015 . . . . . . 7 (𝑥 = 𝑧𝑧 = 𝑥)
3028, 29bitri 275 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
3130anbi1i 624 . . . . 5 ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3226, 27, 313bitri 297 . . . 4 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3332exbii 1845 . . 3 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
34 sbequ12r 2250 . . . . 5 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥𝐴𝑥𝐴))
3514equcoms 2017 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3635eqcomd 2741 . . . . . 6 (𝑧 = 𝑥𝑧 / 𝑥𝐵 = 𝐵)
3736eleq2d 2825 . . . . 5 (𝑧 = 𝑥 → (𝐶𝑧 / 𝑥𝐵𝐶𝐵))
3834, 37anbi12d 632 . . . 4 (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵) ↔ (𝑥𝐴𝐶𝐵)))
3938equsexvw 2002 . . 3 (∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4033, 39bitri 275 . 2 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
412, 24, 403bitri 297 1 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1776  [wsb 2062  wcel 2106  {cab 2712  wrex 3068  csb 3908  {csn 4631  cop 4637   ciun 4996   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-iun 4998  df-opab 5211  df-xp 5695
This theorem is referenced by:  eliunxp  5851  opeliunxp2  5852  opeliunxp2f  8234  gsum2d2lem  20006  gsum2d2  20007  gsumcom2  20008  dprdval  20038  ptbasfi  23605  cnextfun  24088  cnextfvval  24089  cnextf  24090  dvbsss  25952  iunsnima  32638
  Copyright terms: Public domain W3C validator