Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zssxr Structured version   Visualization version   GIF version

Theorem zssxr 45408
Description: The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
zssxr ℤ ⊆ ℝ*

Proof of Theorem zssxr
StepHypRef Expression
1 zssre 12620 . 2 ℤ ⊆ ℝ
2 ressxr 11305 . 2 ℝ ⊆ ℝ*
31, 2sstri 3993 1 ℤ ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wss 3951  cr 11154  *cxr 11294  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-xr 11299  df-neg 11495  df-z 12614
This theorem is referenced by:  limsupequzlem  45737
  Copyright terms: Public domain W3C validator