Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zssxr Structured version   Visualization version   GIF version

Theorem zssxr 45346
Description: The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
zssxr ℤ ⊆ ℝ*

Proof of Theorem zssxr
StepHypRef Expression
1 zssre 12617 . 2 ℤ ⊆ ℝ
2 ressxr 11302 . 2 ℝ ⊆ ℝ*
31, 2sstri 4004 1 ℤ ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wss 3962  cr 11151  *cxr 11291  cz 12610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-xr 11296  df-neg 11492  df-z 12611
This theorem is referenced by:  limsupequzlem  45677
  Copyright terms: Public domain W3C validator