![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12614 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3998 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3962 ℝcr 11151 ℤcz 12610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-neg 11492 df-z 12611 |
This theorem is referenced by: suprzcl 12695 zred 12719 suprfinzcl 12729 uzssre 12897 uzwo2 12951 infssuzle 12970 infssuzcl 12971 lbzbi 12975 suprzub 12978 uzwo3 12982 rpnnen1lem3 13018 rpnnen1lem5 13020 fzval2 13546 flval3 13851 uzsup 13899 expcan 14205 ltexp2 14206 seqcoll 14499 limsupgre 15513 rlimclim 15578 isercolllem1 15697 isercolllem2 15698 isercoll 15700 caurcvg 15709 caucvg 15711 summolem2a 15747 summolem2 15748 zsum 15750 fsumcvg3 15761 climfsum 15852 prodmolem2a 15966 prodmolem2 15967 zprod 15969 1arith 16960 pgpssslw 19646 gsumval3 19939 zntoslem 21592 rzgrp 21658 zcld 24848 mbflimsup 25714 ig1pdvds 26233 aacjcl 26383 aalioulem3 26390 uzssico 32792 qqhre 33982 ballotlemfc0 34473 ballotlemfcc 34474 ballotlemiex 34482 erdszelem4 35178 erdszelem8 35182 supfz 35708 inffz 35709 poimirlem31 37637 poimirlem32 37638 irrapxlem1 42809 monotuz 42929 monotoddzzfi 42930 rmyeq0 42941 rmyeq 42942 lermy 42943 fzisoeu 45250 fzssre 45264 uzfissfz 45275 ssuzfz 45298 zssxr 45346 uzssre2 45356 uzred 45392 uzinico 45512 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 fourierdlem25 46087 fourierdlem37 46099 fourierdlem52 46113 fourierdlem64 46125 fourierdlem79 46140 etransclem48 46237 hoicvr 46503 |
Copyright terms: Public domain | W3C validator |