Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12332 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3926 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 ℝcr 10879 ℤcz 12328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-neg 11217 df-z 12329 |
This theorem is referenced by: suprzcl 12409 zred 12435 suprfinzcl 12445 uzssre 12613 uzwo2 12661 infssuzle 12680 infssuzcl 12681 lbzbi 12685 suprzub 12688 uzwo3 12692 rpnnen1lem3 12728 rpnnen1lem5 12730 fzval2 13251 flval3 13544 uzsup 13592 expcan 13896 ltexp2 13897 seqcoll 14187 limsupgre 15199 rlimclim 15264 isercolllem1 15385 isercolllem2 15386 isercoll 15388 caurcvg 15397 caucvg 15399 summolem2a 15436 summolem2 15437 zsum 15439 fsumcvg3 15450 climfsum 15541 prodmolem2a 15653 prodmolem2 15654 zprod 15656 1arith 16637 pgpssslw 19228 gsumval3 19517 zntoslem 20773 rzgrp 20837 zcld 23985 mbflimsup 24839 ig1pdvds 25350 aacjcl 25496 aalioulem3 25503 uzssico 31114 qqhre 31979 ballotlemfc0 32468 ballotlemfcc 32469 ballotlemiex 32477 erdszelem4 33165 erdszelem8 33169 supfz 33703 inffz 33704 poimirlem31 35817 poimirlem32 35818 irrapxlem1 40651 monotuz 40770 monotoddzzfi 40771 rmyeq0 40782 rmyeq 40783 lermy 40784 fzisoeu 42846 fzssre 42860 uzfissfz 42872 ssuzfz 42895 zssxr 42944 uzssre2 42954 uzred 42990 uzinico 43105 ioodvbdlimc1lem2 43480 ioodvbdlimc2lem 43482 dvnprodlem1 43494 fourierdlem25 43680 fourierdlem37 43692 fourierdlem52 43706 fourierdlem64 43718 fourierdlem79 43733 etransclem48 43830 hoicvr 44093 |
Copyright terms: Public domain | W3C validator |