| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12540 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ℝcr 11074 ℤcz 12536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 |
| This theorem is referenced by: suprzcl 12621 zred 12645 suprfinzcl 12655 uzssre 12822 uzwo2 12878 infssuzle 12897 infssuzcl 12898 lbzbi 12902 suprzub 12905 uzwo3 12909 rpnnen1lem3 12945 rpnnen1lem5 12947 fzval2 13478 flval3 13784 uzsup 13832 expcan 14141 ltexp2 14142 seqcoll 14436 limsupgre 15454 rlimclim 15519 isercolllem1 15638 isercolllem2 15639 isercoll 15641 caurcvg 15650 caucvg 15652 summolem2a 15688 summolem2 15689 zsum 15691 fsumcvg3 15702 climfsum 15793 prodmolem2a 15907 prodmolem2 15908 zprod 15910 1arith 16905 pgpssslw 19551 gsumval3 19844 zntoslem 21473 rzgrp 21539 zcld 24709 mbflimsup 25574 ig1pdvds 26092 aacjcl 26242 aalioulem3 26249 uzssico 32714 qqhre 34017 ballotlemfc0 34491 ballotlemfcc 34492 ballotlemiex 34500 erdszelem4 35188 erdszelem8 35192 supfz 35723 inffz 35724 poimirlem31 37652 poimirlem32 37653 irrapxlem1 42817 monotuz 42937 monotoddzzfi 42938 rmyeq0 42949 rmyeq 42950 lermy 42951 fzisoeu 45305 fzssre 45319 uzfissfz 45329 ssuzfz 45352 zssxr 45400 uzssre2 45410 uzred 45446 uzinico 45564 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 fourierdlem25 46137 fourierdlem37 46149 fourierdlem52 46163 fourierdlem64 46175 fourierdlem79 46190 etransclem48 46287 hoicvr 46553 |
| Copyright terms: Public domain | W3C validator |