| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12479 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ℝcr 11012 ℤcz 12475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-neg 11354 df-z 12476 |
| This theorem is referenced by: suprzcl 12559 zred 12583 suprfinzcl 12593 uzssre 12760 uzwo2 12812 infssuzle 12831 infssuzcl 12832 lbzbi 12836 suprzub 12839 uzwo3 12843 rpnnen1lem3 12879 rpnnen1lem5 12881 fzval2 13412 flval3 13721 uzsup 13769 expcan 14078 ltexp2 14079 seqcoll 14373 limsupgre 15390 rlimclim 15455 isercolllem1 15574 isercolllem2 15575 isercoll 15577 caurcvg 15586 caucvg 15588 summolem2a 15624 summolem2 15625 zsum 15627 fsumcvg3 15638 climfsum 15729 prodmolem2a 15843 prodmolem2 15844 zprod 15846 1arith 16841 pgpssslw 19528 gsumval3 19821 zntoslem 21495 rzgrp 21562 zcld 24730 mbflimsup 25595 ig1pdvds 26113 aacjcl 26263 aalioulem3 26270 uzssico 32771 qqhre 34054 ballotlemfc0 34527 ballotlemfcc 34528 ballotlemiex 34536 erdszelem4 35259 erdszelem8 35263 supfz 35794 inffz 35795 poimirlem31 37711 poimirlem32 37712 irrapxlem1 42939 monotuz 43058 monotoddzzfi 43059 rmyeq0 43070 rmyeq 43071 lermy 43072 fzisoeu 45425 fzssre 45439 uzfissfz 45449 ssuzfz 45472 zssxr 45519 uzssre2 45529 uzred 45565 uzinico 45683 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 fourierdlem25 46254 fourierdlem37 46266 fourierdlem52 46280 fourierdlem64 46292 fourierdlem79 46307 etransclem48 46404 hoicvr 46670 chnsuslle 47003 |
| Copyright terms: Public domain | W3C validator |