![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12643 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 4012 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ℝcr 11183 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: suprzcl 12723 zred 12747 suprfinzcl 12757 uzssre 12925 uzwo2 12977 infssuzle 12996 infssuzcl 12997 lbzbi 13001 suprzub 13004 uzwo3 13008 rpnnen1lem3 13044 rpnnen1lem5 13046 fzval2 13570 flval3 13866 uzsup 13914 expcan 14219 ltexp2 14220 seqcoll 14513 limsupgre 15527 rlimclim 15592 isercolllem1 15713 isercolllem2 15714 isercoll 15716 caurcvg 15725 caucvg 15727 summolem2a 15763 summolem2 15764 zsum 15766 fsumcvg3 15777 climfsum 15868 prodmolem2a 15982 prodmolem2 15983 zprod 15985 1arith 16974 pgpssslw 19656 gsumval3 19949 zntoslem 21598 rzgrp 21664 zcld 24854 mbflimsup 25720 ig1pdvds 26239 aacjcl 26387 aalioulem3 26394 uzssico 32789 qqhre 33966 ballotlemfc0 34457 ballotlemfcc 34458 ballotlemiex 34466 erdszelem4 35162 erdszelem8 35166 supfz 35691 inffz 35692 poimirlem31 37611 poimirlem32 37612 irrapxlem1 42778 monotuz 42898 monotoddzzfi 42899 rmyeq0 42910 rmyeq 42911 lermy 42912 fzisoeu 45215 fzssre 45229 uzfissfz 45241 ssuzfz 45264 zssxr 45312 uzssre2 45322 uzred 45358 uzinico 45478 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 dvnprodlem1 45867 fourierdlem25 46053 fourierdlem37 46065 fourierdlem52 46079 fourierdlem64 46091 fourierdlem79 46106 etransclem48 46203 hoicvr 46469 |
Copyright terms: Public domain | W3C validator |