![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11709 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3832 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3799 ℝcr 10252 ℤcz 11705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-iota 6087 df-fv 6132 df-ov 6909 df-neg 10589 df-z 11706 |
This theorem is referenced by: suprzcl 11786 zred 11811 suprfinzcl 11821 uzwo2 12036 infssuzle 12055 infssuzcl 12056 lbzbi 12060 suprzub 12063 uzwo3 12067 rpnnen1lem3 12102 rpnnen1lem5 12104 fzval2 12623 flval3 12912 uzsup 12958 expcan 13208 ltexp2 13209 seqcoll 13538 limsupgre 14590 rlimclim 14655 isercolllem1 14773 isercolllem2 14774 isercoll 14776 caurcvg 14785 caucvg 14787 summolem2a 14824 summolem2 14825 zsum 14827 fsumcvg3 14838 climfsum 14927 prodmolem2a 15038 prodmolem2 15039 zprod 15041 1arith 16003 pgpssslw 18381 gsumval3 18662 zntoslem 20265 rzgrp 20331 zcld 22987 mbflimsup 23833 ig1pdvds 24336 aacjcl 24482 aalioulem3 24489 uzssico 30094 qqhre 30610 ballotlemfc0 31101 ballotlemfcc 31102 ballotlemiex 31110 erdszelem4 31723 erdszelem8 31727 supfz 32157 inffz 32158 poimirlem31 33985 poimirlem32 33986 irrapxlem1 38231 monotuz 38350 monotoddzzfi 38351 rmyeq0 38364 rmyeq 38365 lermy 38366 fzisoeu 40313 fzssre 40327 uzfissfz 40340 ssuzfz 40363 uzssre 40416 zssxr 40417 uzssre2 40429 uzred 40466 uzinico 40583 ioodvbdlimc1lem2 40943 ioodvbdlimc2lem 40945 dvnprodlem1 40957 fourierdlem25 41144 fourierdlem37 41156 fourierdlem52 41170 fourierdlem64 41182 fourierdlem79 41197 etransclem48 41294 hoicvr 41557 |
Copyright terms: Public domain | W3C validator |