| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12600 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3967 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 ℝcr 11136 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-neg 11477 df-z 12597 |
| This theorem is referenced by: suprzcl 12681 zred 12705 suprfinzcl 12715 uzssre 12882 uzwo2 12936 infssuzle 12955 infssuzcl 12956 lbzbi 12960 suprzub 12963 uzwo3 12967 rpnnen1lem3 13003 rpnnen1lem5 13005 fzval2 13532 flval3 13837 uzsup 13885 expcan 14191 ltexp2 14192 seqcoll 14485 limsupgre 15499 rlimclim 15564 isercolllem1 15683 isercolllem2 15684 isercoll 15686 caurcvg 15695 caucvg 15697 summolem2a 15733 summolem2 15734 zsum 15736 fsumcvg3 15747 climfsum 15838 prodmolem2a 15952 prodmolem2 15953 zprod 15955 1arith 16947 pgpssslw 19600 gsumval3 19893 zntoslem 21529 rzgrp 21595 zcld 24771 mbflimsup 25637 ig1pdvds 26155 aacjcl 26305 aalioulem3 26312 uzssico 32725 qqhre 33980 ballotlemfc0 34454 ballotlemfcc 34455 ballotlemiex 34463 erdszelem4 35158 erdszelem8 35162 supfz 35688 inffz 35689 poimirlem31 37617 poimirlem32 37618 irrapxlem1 42796 monotuz 42916 monotoddzzfi 42917 rmyeq0 42928 rmyeq 42929 lermy 42930 fzisoeu 45269 fzssre 45283 uzfissfz 45294 ssuzfz 45317 zssxr 45365 uzssre2 45375 uzred 45411 uzinico 45530 ioodvbdlimc1lem2 45904 ioodvbdlimc2lem 45906 fourierdlem25 46104 fourierdlem37 46116 fourierdlem52 46130 fourierdlem64 46142 fourierdlem79 46157 etransclem48 46254 hoicvr 46520 |
| Copyright terms: Public domain | W3C validator |