| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12592 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3962 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 ℝcr 11128 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 df-z 12589 |
| This theorem is referenced by: suprzcl 12673 zred 12697 suprfinzcl 12707 uzssre 12874 uzwo2 12928 infssuzle 12947 infssuzcl 12948 lbzbi 12952 suprzub 12955 uzwo3 12959 rpnnen1lem3 12995 rpnnen1lem5 12997 fzval2 13527 flval3 13832 uzsup 13880 expcan 14187 ltexp2 14188 seqcoll 14482 limsupgre 15497 rlimclim 15562 isercolllem1 15681 isercolllem2 15682 isercoll 15684 caurcvg 15693 caucvg 15695 summolem2a 15731 summolem2 15732 zsum 15734 fsumcvg3 15745 climfsum 15836 prodmolem2a 15950 prodmolem2 15951 zprod 15953 1arith 16947 pgpssslw 19595 gsumval3 19888 zntoslem 21517 rzgrp 21583 zcld 24753 mbflimsup 25619 ig1pdvds 26137 aacjcl 26287 aalioulem3 26294 uzssico 32761 qqhre 34051 ballotlemfc0 34525 ballotlemfcc 34526 ballotlemiex 34534 erdszelem4 35216 erdszelem8 35220 supfz 35746 inffz 35747 poimirlem31 37675 poimirlem32 37676 irrapxlem1 42845 monotuz 42965 monotoddzzfi 42966 rmyeq0 42977 rmyeq 42978 lermy 42979 fzisoeu 45329 fzssre 45343 uzfissfz 45353 ssuzfz 45376 zssxr 45424 uzssre2 45434 uzred 45470 uzinico 45588 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 fourierdlem25 46161 fourierdlem37 46173 fourierdlem52 46187 fourierdlem64 46199 fourierdlem79 46214 etransclem48 46311 hoicvr 46577 |
| Copyright terms: Public domain | W3C validator |