| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12493 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3941 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 ℝcr 11027 ℤcz 12489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-neg 11368 df-z 12490 |
| This theorem is referenced by: suprzcl 12574 zred 12598 suprfinzcl 12608 uzssre 12775 uzwo2 12831 infssuzle 12850 infssuzcl 12851 lbzbi 12855 suprzub 12858 uzwo3 12862 rpnnen1lem3 12898 rpnnen1lem5 12900 fzval2 13431 flval3 13737 uzsup 13785 expcan 14094 ltexp2 14095 seqcoll 14389 limsupgre 15406 rlimclim 15471 isercolllem1 15590 isercolllem2 15591 isercoll 15593 caurcvg 15602 caucvg 15604 summolem2a 15640 summolem2 15641 zsum 15643 fsumcvg3 15654 climfsum 15745 prodmolem2a 15859 prodmolem2 15860 zprod 15862 1arith 16857 pgpssslw 19511 gsumval3 19804 zntoslem 21481 rzgrp 21548 zcld 24718 mbflimsup 25583 ig1pdvds 26101 aacjcl 26251 aalioulem3 26258 uzssico 32740 qqhre 33986 ballotlemfc0 34460 ballotlemfcc 34461 ballotlemiex 34469 erdszelem4 35166 erdszelem8 35170 supfz 35701 inffz 35702 poimirlem31 37630 poimirlem32 37631 irrapxlem1 42795 monotuz 42914 monotoddzzfi 42915 rmyeq0 42926 rmyeq 42927 lermy 42928 fzisoeu 45282 fzssre 45296 uzfissfz 45306 ssuzfz 45329 zssxr 45377 uzssre2 45387 uzred 45423 uzinico 45541 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 fourierdlem25 46114 fourierdlem37 46126 fourierdlem52 46140 fourierdlem64 46152 fourierdlem79 46167 etransclem48 46264 hoicvr 46530 |
| Copyright terms: Public domain | W3C validator |