| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12469 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3938 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 ℝcr 11002 ℤcz 12465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11344 df-z 12466 |
| This theorem is referenced by: suprzcl 12550 zred 12574 suprfinzcl 12584 uzssre 12751 uzwo2 12807 infssuzle 12826 infssuzcl 12827 lbzbi 12831 suprzub 12834 uzwo3 12838 rpnnen1lem3 12874 rpnnen1lem5 12876 fzval2 13407 flval3 13716 uzsup 13764 expcan 14073 ltexp2 14074 seqcoll 14368 limsupgre 15385 rlimclim 15450 isercolllem1 15569 isercolllem2 15570 isercoll 15572 caurcvg 15581 caucvg 15583 summolem2a 15619 summolem2 15620 zsum 15622 fsumcvg3 15633 climfsum 15724 prodmolem2a 15838 prodmolem2 15839 zprod 15841 1arith 16836 pgpssslw 19524 gsumval3 19817 zntoslem 21491 rzgrp 21558 zcld 24727 mbflimsup 25592 ig1pdvds 26110 aacjcl 26260 aalioulem3 26267 uzssico 32762 qqhre 34028 ballotlemfc0 34501 ballotlemfcc 34502 ballotlemiex 34510 erdszelem4 35226 erdszelem8 35230 supfz 35761 inffz 35762 poimirlem31 37690 poimirlem32 37691 irrapxlem1 42854 monotuz 42973 monotoddzzfi 42974 rmyeq0 42985 rmyeq 42986 lermy 42987 fzisoeu 45340 fzssre 45354 uzfissfz 45364 ssuzfz 45387 zssxr 45434 uzssre2 45444 uzred 45480 uzinico 45598 ioodvbdlimc1lem2 45969 ioodvbdlimc2lem 45971 fourierdlem25 46169 fourierdlem37 46181 fourierdlem52 46195 fourierdlem64 46207 fourierdlem79 46222 etransclem48 46319 hoicvr 46585 |
| Copyright terms: Public domain | W3C validator |