Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12253 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3921 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ℝcr 10801 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 |
This theorem is referenced by: suprzcl 12330 zred 12355 suprfinzcl 12365 uzssre 12533 uzwo2 12581 infssuzle 12600 infssuzcl 12601 lbzbi 12605 suprzub 12608 uzwo3 12612 rpnnen1lem3 12648 rpnnen1lem5 12650 fzval2 13171 flval3 13463 uzsup 13511 expcan 13815 ltexp2 13816 seqcoll 14106 limsupgre 15118 rlimclim 15183 isercolllem1 15304 isercolllem2 15305 isercoll 15307 caurcvg 15316 caucvg 15318 summolem2a 15355 summolem2 15356 zsum 15358 fsumcvg3 15369 climfsum 15460 prodmolem2a 15572 prodmolem2 15573 zprod 15575 1arith 16556 pgpssslw 19134 gsumval3 19423 zntoslem 20676 rzgrp 20740 zcld 23882 mbflimsup 24735 ig1pdvds 25246 aacjcl 25392 aalioulem3 25399 uzssico 31007 qqhre 31870 ballotlemfc0 32359 ballotlemfcc 32360 ballotlemiex 32368 erdszelem4 33056 erdszelem8 33060 supfz 33600 inffz 33601 poimirlem31 35735 poimirlem32 35736 irrapxlem1 40560 monotuz 40679 monotoddzzfi 40680 rmyeq0 40691 rmyeq 40692 lermy 40693 fzisoeu 42729 fzssre 42743 uzfissfz 42755 ssuzfz 42778 zssxr 42827 uzssre2 42837 uzred 42873 uzinico 42988 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 dvnprodlem1 43377 fourierdlem25 43563 fourierdlem37 43575 fourierdlem52 43589 fourierdlem64 43601 fourierdlem79 43616 etransclem48 43713 hoicvr 43976 |
Copyright terms: Public domain | W3C validator |