Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12180 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3905 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3866 ℝcr 10728 ℤcz 12176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-neg 11065 df-z 12177 |
This theorem is referenced by: suprzcl 12257 zred 12282 suprfinzcl 12292 uzssre 12460 uzwo2 12508 infssuzle 12527 infssuzcl 12528 lbzbi 12532 suprzub 12535 uzwo3 12539 rpnnen1lem3 12575 rpnnen1lem5 12577 fzval2 13098 flval3 13390 uzsup 13436 expcan 13739 ltexp2 13740 seqcoll 14030 limsupgre 15042 rlimclim 15107 isercolllem1 15228 isercolllem2 15229 isercoll 15231 caurcvg 15240 caucvg 15242 summolem2a 15279 summolem2 15280 zsum 15282 fsumcvg3 15293 climfsum 15384 prodmolem2a 15496 prodmolem2 15497 zprod 15499 1arith 16480 pgpssslw 19003 gsumval3 19292 zntoslem 20521 rzgrp 20585 zcld 23710 mbflimsup 24563 ig1pdvds 25074 aacjcl 25220 aalioulem3 25227 uzssico 30825 qqhre 31682 ballotlemfc0 32171 ballotlemfcc 32172 ballotlemiex 32180 erdszelem4 32869 erdszelem8 32873 supfz 33412 inffz 33413 poimirlem31 35545 poimirlem32 35546 irrapxlem1 40347 monotuz 40466 monotoddzzfi 40467 rmyeq0 40478 rmyeq 40479 lermy 40480 fzisoeu 42512 fzssre 42526 uzfissfz 42538 ssuzfz 42561 zssxr 42610 uzssre2 42620 uzred 42656 uzinico 42773 ioodvbdlimc1lem2 43148 ioodvbdlimc2lem 43150 dvnprodlem1 43162 fourierdlem25 43348 fourierdlem37 43360 fourierdlem52 43374 fourierdlem64 43386 fourierdlem79 43401 etransclem48 43498 hoicvr 43761 |
Copyright terms: Public domain | W3C validator |