| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zssre | Structured version Visualization version GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12533 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ℝcr 11067 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 |
| This theorem is referenced by: suprzcl 12614 zred 12638 suprfinzcl 12648 uzssre 12815 uzwo2 12871 infssuzle 12890 infssuzcl 12891 lbzbi 12895 suprzub 12898 uzwo3 12902 rpnnen1lem3 12938 rpnnen1lem5 12940 fzval2 13471 flval3 13777 uzsup 13825 expcan 14134 ltexp2 14135 seqcoll 14429 limsupgre 15447 rlimclim 15512 isercolllem1 15631 isercolllem2 15632 isercoll 15634 caurcvg 15643 caucvg 15645 summolem2a 15681 summolem2 15682 zsum 15684 fsumcvg3 15695 climfsum 15786 prodmolem2a 15900 prodmolem2 15901 zprod 15903 1arith 16898 pgpssslw 19544 gsumval3 19837 zntoslem 21466 rzgrp 21532 zcld 24702 mbflimsup 25567 ig1pdvds 26085 aacjcl 26235 aalioulem3 26242 uzssico 32707 qqhre 34010 ballotlemfc0 34484 ballotlemfcc 34485 ballotlemiex 34493 erdszelem4 35181 erdszelem8 35185 supfz 35716 inffz 35717 poimirlem31 37645 poimirlem32 37646 irrapxlem1 42810 monotuz 42930 monotoddzzfi 42931 rmyeq0 42942 rmyeq 42943 lermy 42944 fzisoeu 45298 fzssre 45312 uzfissfz 45322 ssuzfz 45345 zssxr 45393 uzssre2 45403 uzred 45439 uzinico 45557 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 fourierdlem25 46130 fourierdlem37 46142 fourierdlem52 46156 fourierdlem64 46168 fourierdlem79 46183 etransclem48 46280 hoicvr 46546 |
| Copyright terms: Public domain | W3C validator |