Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisupclrnmpt Structured version   Visualization version   GIF version

Theorem fisupclrnmpt 44094
Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fisupclrnmpt.x 𝑥𝜑
fisupclrnmpt.r (𝜑𝑅 Or 𝐴)
fisupclrnmpt.b (𝜑𝐵 ∈ Fin)
fisupclrnmpt.n (𝜑𝐵 ≠ ∅)
fisupclrnmpt.c ((𝜑𝑥𝐵) → 𝐶𝐴)
Assertion
Ref Expression
fisupclrnmpt (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem fisupclrnmpt
StepHypRef Expression
1 fisupclrnmpt.x . . 3 𝑥𝜑
2 eqid 2732 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
3 fisupclrnmpt.c . . 3 ((𝜑𝑥𝐵) → 𝐶𝐴)
41, 2, 3rnmptssd 43880 . 2 (𝜑 → ran (𝑥𝐵𝐶) ⊆ 𝐴)
5 fisupclrnmpt.r . . 3 (𝜑𝑅 Or 𝐴)
6 fisupclrnmpt.b . . . 4 (𝜑𝐵 ∈ Fin)
72rnmptfi 43852 . . . 4 (𝐵 ∈ Fin → ran (𝑥𝐵𝐶) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ∈ Fin)
9 fisupclrnmpt.n . . . 4 (𝜑𝐵 ≠ ∅)
101, 3, 2, 9rnmptn0 6240 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ≠ ∅)
11 fisupcl 9460 . . 3 ((𝑅 Or 𝐴 ∧ (ran (𝑥𝐵𝐶) ∈ Fin ∧ ran (𝑥𝐵𝐶) ≠ ∅ ∧ ran (𝑥𝐵𝐶) ⊆ 𝐴)) → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
125, 8, 10, 4, 11syl13anc 1372 . 2 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
134, 12sseldd 3982 1 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1785  wcel 2106  wne 2940  wss 3947  c0 4321  cmpt 5230   Or wor 5586  ran crn 5676  Fincfn 8935  supcsup 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-fin 8939  df-sup 9433
This theorem is referenced by:  uzublem  44126  limsupubuzlem  44414
  Copyright terms: Public domain W3C validator