Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisupclrnmpt Structured version   Visualization version   GIF version

Theorem fisupclrnmpt 42938
Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fisupclrnmpt.x 𝑥𝜑
fisupclrnmpt.r (𝜑𝑅 Or 𝐴)
fisupclrnmpt.b (𝜑𝐵 ∈ Fin)
fisupclrnmpt.n (𝜑𝐵 ≠ ∅)
fisupclrnmpt.c ((𝜑𝑥𝐵) → 𝐶𝐴)
Assertion
Ref Expression
fisupclrnmpt (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem fisupclrnmpt
StepHypRef Expression
1 fisupclrnmpt.x . . 3 𝑥𝜑
2 eqid 2738 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
3 fisupclrnmpt.c . . 3 ((𝜑𝑥𝐵) → 𝐶𝐴)
41, 2, 3rnmptssd 42735 . 2 (𝜑 → ran (𝑥𝐵𝐶) ⊆ 𝐴)
5 fisupclrnmpt.r . . 3 (𝜑𝑅 Or 𝐴)
6 fisupclrnmpt.b . . . 4 (𝜑𝐵 ∈ Fin)
72rnmptfi 42707 . . . 4 (𝐵 ∈ Fin → ran (𝑥𝐵𝐶) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ∈ Fin)
9 fisupclrnmpt.n . . . 4 (𝜑𝐵 ≠ ∅)
101, 3, 2, 9rnmptn0 6147 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ≠ ∅)
11 fisupcl 9228 . . 3 ((𝑅 Or 𝐴 ∧ (ran (𝑥𝐵𝐶) ∈ Fin ∧ ran (𝑥𝐵𝐶) ≠ ∅ ∧ ran (𝑥𝐵𝐶) ⊆ 𝐴)) → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
125, 8, 10, 4, 11syl13anc 1371 . 2 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
134, 12sseldd 3922 1 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wne 2943  wss 3887  c0 4256  cmpt 5157   Or wor 5502  ran crn 5590  Fincfn 8733  supcsup 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-sup 9201
This theorem is referenced by:  uzublem  42970  limsupubuzlem  43253
  Copyright terms: Public domain W3C validator