Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisupclrnmpt Structured version   Visualization version   GIF version

Theorem fisupclrnmpt 45558
Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fisupclrnmpt.x 𝑥𝜑
fisupclrnmpt.r (𝜑𝑅 Or 𝐴)
fisupclrnmpt.b (𝜑𝐵 ∈ Fin)
fisupclrnmpt.n (𝜑𝐵 ≠ ∅)
fisupclrnmpt.c ((𝜑𝑥𝐵) → 𝐶𝐴)
Assertion
Ref Expression
fisupclrnmpt (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem fisupclrnmpt
StepHypRef Expression
1 fisupclrnmpt.x . . 3 𝑥𝜑
2 eqid 2733 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
3 fisupclrnmpt.c . . 3 ((𝜑𝑥𝐵) → 𝐶𝐴)
41, 2, 3rnmptssd 45356 . 2 (𝜑 → ran (𝑥𝐵𝐶) ⊆ 𝐴)
5 fisupclrnmpt.r . . 3 (𝜑𝑅 Or 𝐴)
6 fisupclrnmpt.b . . . 4 (𝜑𝐵 ∈ Fin)
72rnmptfi 45331 . . . 4 (𝐵 ∈ Fin → ran (𝑥𝐵𝐶) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ∈ Fin)
9 fisupclrnmpt.n . . . 4 (𝜑𝐵 ≠ ∅)
101, 3, 2, 9rnmptn0 6199 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ≠ ∅)
11 fisupcl 9365 . . 3 ((𝑅 Or 𝐴 ∧ (ran (𝑥𝐵𝐶) ∈ Fin ∧ ran (𝑥𝐵𝐶) ≠ ∅ ∧ ran (𝑥𝐵𝐶) ⊆ 𝐴)) → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
125, 8, 10, 4, 11syl13anc 1374 . 2 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
134, 12sseldd 3931 1 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2113  wne 2929  wss 3898  c0 4282  cmpt 5176   Or wor 5528  ran crn 5622  Fincfn 8879  supcsup 9335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-om 7806  df-1st 7930  df-2nd 7931  df-1o 8394  df-en 8880  df-dom 8881  df-fin 8883  df-sup 9337
This theorem is referenced by:  uzublem  45590  limsupubuzlem  45872
  Copyright terms: Public domain W3C validator