![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fisupclrnmpt | Structured version Visualization version GIF version |
Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fisupclrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
fisupclrnmpt.r | ⊢ (𝜑 → 𝑅 Or 𝐴) |
fisupclrnmpt.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fisupclrnmpt.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
fisupclrnmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
fisupclrnmpt | ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fisupclrnmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqid 2732 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
3 | fisupclrnmpt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
4 | 1, 2, 3 | rnmptssd 43880 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴) |
5 | fisupclrnmpt.r | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
6 | fisupclrnmpt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
7 | 2 | rnmptfi 43852 | . . . 4 ⊢ (𝐵 ∈ Fin → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
9 | fisupclrnmpt.n | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
10 | 1, 3, 2, 9 | rnmptn0 6240 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅) |
11 | fisupcl 9460 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅ ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴)) → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
12 | 5, 8, 10, 4, 11 | syl13anc 1372 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) |
13 | 4, 12 | sseldd 3982 | 1 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1785 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3947 ∅c0 4321 ↦ cmpt 5230 Or wor 5586 ran crn 5676 Fincfn 8935 supcsup 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-om 7852 df-1st 7971 df-2nd 7972 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-fin 8939 df-sup 9433 |
This theorem is referenced by: uzublem 44126 limsupubuzlem 44414 |
Copyright terms: Public domain | W3C validator |