| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisupclrnmpt | Structured version Visualization version GIF version | ||
| Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fisupclrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| fisupclrnmpt.r | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| fisupclrnmpt.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fisupclrnmpt.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| fisupclrnmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fisupclrnmpt | ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisupclrnmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 3 | fisupclrnmpt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
| 4 | 1, 2, 3 | rnmptssd 45220 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴) |
| 5 | fisupclrnmpt.r | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 6 | fisupclrnmpt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 7 | 2 | rnmptfi 45195 | . . . 4 ⊢ (𝐵 ∈ Fin → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 9 | fisupclrnmpt.n | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 10 | 1, 3, 2, 9 | rnmptn0 6233 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅) |
| 11 | fisupcl 9482 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅ ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴)) → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 12 | 5, 8, 10, 4, 11 | syl13anc 1374 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 13 | 4, 12 | sseldd 3959 | 1 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ∅c0 4308 ↦ cmpt 5201 Or wor 5560 ran crn 5655 Fincfn 8959 supcsup 9452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 df-sup 9454 |
| This theorem is referenced by: uzublem 45457 limsupubuzlem 45741 |
| Copyright terms: Public domain | W3C validator |