| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisupclrnmpt | Structured version Visualization version GIF version | ||
| Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fisupclrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| fisupclrnmpt.r | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| fisupclrnmpt.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fisupclrnmpt.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| fisupclrnmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fisupclrnmpt | ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisupclrnmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 3 | fisupclrnmpt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
| 4 | 1, 2, 3 | rnmptssd 45197 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴) |
| 5 | fisupclrnmpt.r | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 6 | fisupclrnmpt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 7 | 2 | rnmptfi 45172 | . . . 4 ⊢ (𝐵 ∈ Fin → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 9 | fisupclrnmpt.n | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 10 | 1, 3, 2, 9 | rnmptn0 6220 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅) |
| 11 | fisupcl 9428 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅ ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴)) → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 12 | 5, 8, 10, 4, 11 | syl13anc 1374 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 13 | 4, 12 | sseldd 3950 | 1 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 ∅c0 4299 ↦ cmpt 5191 Or wor 5548 ran crn 5642 Fincfn 8921 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 df-sup 9400 |
| This theorem is referenced by: uzublem 45433 limsupubuzlem 45717 |
| Copyright terms: Public domain | W3C validator |