Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fisupclrnmpt Structured version   Visualization version   GIF version

Theorem fisupclrnmpt 43719
Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fisupclrnmpt.x 𝑥𝜑
fisupclrnmpt.r (𝜑𝑅 Or 𝐴)
fisupclrnmpt.b (𝜑𝐵 ∈ Fin)
fisupclrnmpt.n (𝜑𝐵 ≠ ∅)
fisupclrnmpt.c ((𝜑𝑥𝐵) → 𝐶𝐴)
Assertion
Ref Expression
fisupclrnmpt (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem fisupclrnmpt
StepHypRef Expression
1 fisupclrnmpt.x . . 3 𝑥𝜑
2 eqid 2733 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
3 fisupclrnmpt.c . . 3 ((𝜑𝑥𝐵) → 𝐶𝐴)
41, 2, 3rnmptssd 43504 . 2 (𝜑 → ran (𝑥𝐵𝐶) ⊆ 𝐴)
5 fisupclrnmpt.r . . 3 (𝜑𝑅 Or 𝐴)
6 fisupclrnmpt.b . . . 4 (𝜑𝐵 ∈ Fin)
72rnmptfi 43476 . . . 4 (𝐵 ∈ Fin → ran (𝑥𝐵𝐶) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ∈ Fin)
9 fisupclrnmpt.n . . . 4 (𝜑𝐵 ≠ ∅)
101, 3, 2, 9rnmptn0 6197 . . 3 (𝜑 → ran (𝑥𝐵𝐶) ≠ ∅)
11 fisupcl 9410 . . 3 ((𝑅 Or 𝐴 ∧ (ran (𝑥𝐵𝐶) ∈ Fin ∧ ran (𝑥𝐵𝐶) ≠ ∅ ∧ ran (𝑥𝐵𝐶) ⊆ 𝐴)) → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
125, 8, 10, 4, 11syl13anc 1373 . 2 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ ran (𝑥𝐵𝐶))
134, 12sseldd 3946 1 (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wnf 1786  wcel 2107  wne 2940  wss 3911  c0 4283  cmpt 5189   Or wor 5545  ran crn 5635  Fincfn 8886  supcsup 9381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-om 7804  df-1st 7922  df-2nd 7923  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-fin 8890  df-sup 9383
This theorem is referenced by:  uzublem  43751  limsupubuzlem  44039
  Copyright terms: Public domain W3C validator