| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fisupclrnmpt | Structured version Visualization version GIF version | ||
| Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fisupclrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| fisupclrnmpt.r | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| fisupclrnmpt.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fisupclrnmpt.n | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| fisupclrnmpt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fisupclrnmpt | ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisupclrnmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 3 | fisupclrnmpt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
| 4 | 1, 2, 3 | rnmptssd 45194 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴) |
| 5 | fisupclrnmpt.r | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 6 | fisupclrnmpt.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 7 | 2 | rnmptfi 45169 | . . . 4 ⊢ (𝐵 ∈ Fin → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin) |
| 9 | fisupclrnmpt.n | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 10 | 1, 3, 2, 9 | rnmptn0 6197 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅) |
| 11 | fisupcl 9379 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (ran (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ Fin ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≠ ∅ ∧ ran (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐴)) → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 12 | 5, 8, 10, 4, 11 | syl13anc 1374 | . 2 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 13 | 4, 12 | sseldd 3938 | 1 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 ↦ cmpt 5176 Or wor 5530 ran crn 5624 Fincfn 8879 supcsup 9349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 df-sup 9351 |
| This theorem is referenced by: uzublem 45429 limsupubuzlem 45713 |
| Copyright terms: Public domain | W3C validator |