New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ndmovord | GIF version |
Description: Elimination of redundant antecedents in an ordering law. (Contributed by set.mm contributors, 7-Mar-1996.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ B ∈ V |
ndmov.2 | ⊢ dom F = (S × S) |
ndmovord.3 | ⊢ A ∈ V |
ndmovord.4 | ⊢ R ⊆ (S × S) |
ndmovord.5 | ⊢ ¬ ∅ ∈ S |
ndmovord.6 | ⊢ ((A ∈ S ∧ B ∈ S ∧ C ∈ S) → (ARB ↔ (CFA)R(CFB))) |
Ref | Expression |
---|---|
ndmovord | ⊢ (C ∈ S → (ARB ↔ (CFA)R(CFB))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovord.6 | . . 3 ⊢ ((A ∈ S ∧ B ∈ S ∧ C ∈ S) → (ARB ↔ (CFA)R(CFB))) | |
2 | 1 | 3expia 1153 | . 2 ⊢ ((A ∈ S ∧ B ∈ S) → (C ∈ S → (ARB ↔ (CFA)R(CFB)))) |
3 | ndmovord.4 | . . . . 5 ⊢ R ⊆ (S × S) | |
4 | 3 | brel 4831 | . . . 4 ⊢ (ARB → (A ∈ S ∧ B ∈ S)) |
5 | 3 | brel 4831 | . . . . 5 ⊢ ((CFA)R(CFB) → ((CFA) ∈ S ∧ (CFB) ∈ S)) |
6 | ndmovord.3 | . . . . . . . 8 ⊢ A ∈ V | |
7 | ndmov.2 | . . . . . . . 8 ⊢ dom F = (S × S) | |
8 | ndmovord.5 | . . . . . . . 8 ⊢ ¬ ∅ ∈ S | |
9 | 6, 7, 8 | ndmovrcl 5617 | . . . . . . 7 ⊢ ((CFA) ∈ S → (C ∈ S ∧ A ∈ S)) |
10 | 9 | simprd 449 | . . . . . 6 ⊢ ((CFA) ∈ S → A ∈ S) |
11 | ndmov.1 | . . . . . . . 8 ⊢ B ∈ V | |
12 | 11, 7, 8 | ndmovrcl 5617 | . . . . . . 7 ⊢ ((CFB) ∈ S → (C ∈ S ∧ B ∈ S)) |
13 | 12 | simprd 449 | . . . . . 6 ⊢ ((CFB) ∈ S → B ∈ S) |
14 | 10, 13 | anim12i 549 | . . . . 5 ⊢ (((CFA) ∈ S ∧ (CFB) ∈ S) → (A ∈ S ∧ B ∈ S)) |
15 | 5, 14 | syl 15 | . . . 4 ⊢ ((CFA)R(CFB) → (A ∈ S ∧ B ∈ S)) |
16 | 4, 15 | pm5.21ni 341 | . . 3 ⊢ (¬ (A ∈ S ∧ B ∈ S) → (ARB ↔ (CFA)R(CFB))) |
17 | 16 | a1d 22 | . 2 ⊢ (¬ (A ∈ S ∧ B ∈ S) → (C ∈ S → (ARB ↔ (CFA)R(CFB)))) |
18 | 2, 17 | pm2.61i 156 | 1 ⊢ (C ∈ S → (ARB ↔ (CFA)R(CFB))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ∅c0 3551 class class class wbr 4640 × cxp 4771 dom cdm 4773 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |