NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nulge GIF version

Theorem nulge 4457
Description: If the empty set is a finite cardinal, then it is a maximal element. (Contributed by SF, 19-Jan-2015.)
Assertion
Ref Expression
nulge (( Nn A V) → ⟪A, fin )

Proof of Theorem nulge
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 addcnul1 4453 . . . . 5 (A +c ) =
21eqcomi 2357 . . . 4 = (A +c )
3 addceq2 4385 . . . . . 6 (x = → (A +c x) = (A +c ))
43eqeq2d 2364 . . . . 5 (x = → ( = (A +c x) ↔ = (A +c )))
54rspcev 2956 . . . 4 (( Nn = (A +c )) → x Nn = (A +c x))
62, 5mpan2 652 . . 3 ( Nnx Nn = (A +c x))
76adantr 451 . 2 (( Nn A V) → x Nn = (A +c x))
8 opklefing 4449 . . 3 ((A V Nn ) → (⟪A, finx Nn = (A +c x)))
98ancoms 439 . 2 (( Nn A V) → (⟪A, finx Nn = (A +c x)))
107, 9mpbird 223 1 (( Nn A V) → ⟪A, fin )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wrex 2616  c0 3551  copk 4058   Nn cnnc 4374   +c cplc 4376  fin clefin 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379  df-lefin 4441
This theorem is referenced by:  lenltfin  4470
  Copyright terms: Public domain W3C validator