| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nulge | GIF version | ||
| Description: If the empty set is a finite cardinal, then it is a maximal element. (Contributed by SF, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| nulge | ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ⟪A, ∅⟫ ∈ ≤fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcnul1 4453 | . . . . 5 ⊢ (A +c ∅) = ∅ | |
| 2 | 1 | eqcomi 2357 | . . . 4 ⊢ ∅ = (A +c ∅) |
| 3 | addceq2 4385 | . . . . . 6 ⊢ (x = ∅ → (A +c x) = (A +c ∅)) | |
| 4 | 3 | eqeq2d 2364 | . . . . 5 ⊢ (x = ∅ → (∅ = (A +c x) ↔ ∅ = (A +c ∅))) |
| 5 | 4 | rspcev 2956 | . . . 4 ⊢ ((∅ ∈ Nn ∧ ∅ = (A +c ∅)) → ∃x ∈ Nn ∅ = (A +c x)) |
| 6 | 2, 5 | mpan2 652 | . . 3 ⊢ (∅ ∈ Nn → ∃x ∈ Nn ∅ = (A +c x)) |
| 7 | 6 | adantr 451 | . 2 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ∃x ∈ Nn ∅ = (A +c x)) |
| 8 | opklefing 4449 | . . 3 ⊢ ((A ∈ V ∧ ∅ ∈ Nn ) → (⟪A, ∅⟫ ∈ ≤fin ↔ ∃x ∈ Nn ∅ = (A +c x))) | |
| 9 | 8 | ancoms 439 | . 2 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → (⟪A, ∅⟫ ∈ ≤fin ↔ ∃x ∈ Nn ∅ = (A +c x))) |
| 10 | 7, 9 | mpbird 223 | 1 ⊢ ((∅ ∈ Nn ∧ A ∈ V) → ⟪A, ∅⟫ ∈ ≤fin ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ∅c0 3551 ⟪copk 4058 Nn cnnc 4374 +c cplc 4376 ≤fin clefin 4433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 df-lefin 4441 |
| This theorem is referenced by: lenltfin 4470 |
| Copyright terms: Public domain | W3C validator |