Step | Hyp | Ref
| Expression |
1 | | df-pw1fn 5767 |
. . 3
⊢ Pw1Fn = (x ∈ 1c ↦ ℘1∪x) |
2 | | oteltxp 5783 |
. . . . . . . 8
⊢ (〈{{t}}, 〈{y}, x〉〉 ∈ ( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) ↔ (〈{{t}},
{y}〉
∈ I ∧ 〈{{t}},
x〉 ∈ (( SI ◡ S ⊗
S ) “
1c))) |
3 | | snex 4112 |
. . . . . . . . . . 11
⊢ {y} ∈
V |
4 | 3 | ideq 4871 |
. . . . . . . . . 10
⊢ ({{t}} I {y} ↔
{{t}} = {y}) |
5 | | df-br 4641 |
. . . . . . . . . 10
⊢ ({{t}} I {y} ↔
〈{{t}},
{y}〉
∈ I ) |
6 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ ({{t}} = {y} ↔
{y} = {{t}}) |
7 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
8 | 7 | sneqb 3877 |
. . . . . . . . . . 11
⊢ ({y} = {{t}}
↔ y = {t}) |
9 | 6, 8 | bitri 240 |
. . . . . . . . . 10
⊢ ({{t}} = {y} ↔
y = {t}) |
10 | 4, 5, 9 | 3bitr3i 266 |
. . . . . . . . 9
⊢ (〈{{t}},
{y}〉
∈ I ↔ y = {t}) |
11 | | oteltxp 5783 |
. . . . . . . . . . . 12
⊢ (〈{y}, 〈{{t}},
x〉〉 ∈ ( SI ◡ S ⊗ S ) ↔
(〈{y},
{{t}}〉
∈ SI ◡ S ∧ 〈{y}, x〉 ∈ S )) |
12 | | snex 4112 |
. . . . . . . . . . . . . . 15
⊢ {t} ∈
V |
13 | 7, 12 | brsnsi 5774 |
. . . . . . . . . . . . . 14
⊢ ({y} SI ◡ S {{t}} ↔ y◡ S {t}) |
14 | | df-br 4641 |
. . . . . . . . . . . . . 14
⊢ ({y} SI ◡ S {{t}} ↔ 〈{y},
{{t}}〉
∈ SI ◡ S
) |
15 | | brcnv 4893 |
. . . . . . . . . . . . . . 15
⊢ (y◡ S {t} ↔
{t} S y) |
16 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ t ∈
V |
17 | 16, 7 | brssetsn 4760 |
. . . . . . . . . . . . . . 15
⊢ ({t} S y ↔ t ∈ y) |
18 | 15, 17 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (y◡ S {t} ↔
t ∈
y) |
19 | 13, 14, 18 | 3bitr3i 266 |
. . . . . . . . . . . . 13
⊢ (〈{y},
{{t}}〉
∈ SI ◡ S ↔
t ∈
y) |
20 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ x ∈
V |
21 | 7, 20 | opelssetsn 4761 |
. . . . . . . . . . . . 13
⊢ (〈{y}, x〉 ∈ S ↔ y ∈ x) |
22 | 19, 21 | anbi12i 678 |
. . . . . . . . . . . 12
⊢ ((〈{y},
{{t}}〉
∈ SI ◡ S ∧ 〈{y}, x〉 ∈ S ) ↔ (t ∈ y ∧ y ∈ x)) |
23 | 11, 22 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{y}, 〈{{t}},
x〉〉 ∈ ( SI ◡ S ⊗ S ) ↔
(t ∈
y ∧
y ∈
x)) |
24 | 23 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃y〈{y}, 〈{{t}},
x〉〉 ∈ ( SI ◡ S ⊗ S ) ↔
∃y(t ∈ y ∧ y ∈ x)) |
25 | | elima1c 4948 |
. . . . . . . . . 10
⊢ (〈{{t}},
x〉 ∈ (( SI ◡ S ⊗
S ) “ 1c) ↔ ∃y〈{y}, 〈{{t}},
x〉〉 ∈ ( SI ◡ S ⊗ S
)) |
26 | | eluni 3895 |
. . . . . . . . . 10
⊢ (t ∈ ∪x ↔ ∃y(t ∈ y ∧ y ∈ x)) |
27 | 24, 25, 26 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (〈{{t}},
x〉 ∈ (( SI ◡ S ⊗
S ) “ 1c) ↔ t ∈ ∪x) |
28 | 10, 27 | anbi12i 678 |
. . . . . . . 8
⊢ ((〈{{t}},
{y}〉
∈ I ∧ 〈{{t}},
x〉 ∈ (( SI ◡ S ⊗
S ) “ 1c)) ↔
(y = {t} ∧ t ∈ ∪x)) |
29 | 2, 28 | bitri 240 |
. . . . . . 7
⊢ (〈{{t}}, 〈{y}, x〉〉 ∈ ( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) ↔
(y = {t} ∧ t ∈ ∪x)) |
30 | | ancom 437 |
. . . . . . 7
⊢ ((y = {t} ∧ t ∈ ∪x) ↔ (t
∈ ∪x ∧ y = {t})) |
31 | 29, 30 | bitri 240 |
. . . . . 6
⊢ (〈{{t}}, 〈{y}, x〉〉 ∈ ( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) ↔
(t ∈
∪x ∧ y = {t})) |
32 | 31 | exbii 1582 |
. . . . 5
⊢ (∃t〈{{t}}, 〈{y}, x〉〉 ∈ ( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) ↔ ∃t(t ∈ ∪x ∧ y = {t})) |
33 | | elimapw11c 4949 |
. . . . 5
⊢ (〈{y}, x〉 ∈ (( I ⊗ (( SI
◡ S
⊗ S ) “
1c)) “ ℘11c) ↔ ∃t〈{{t}}, 〈{y}, x〉〉 ∈ ( I ⊗
(( SI ◡ S ⊗
S ) “
1c))) |
34 | | elpw1 4145 |
. . . . . 6
⊢ (y ∈ ℘1∪x ↔ ∃t ∈ ∪xy = {t}) |
35 | | df-rex 2621 |
. . . . . 6
⊢ (∃t ∈ ∪xy = {t} ↔ ∃t(t ∈ ∪x ∧ y = {t})) |
36 | 34, 35 | bitri 240 |
. . . . 5
⊢ (y ∈ ℘1∪x ↔ ∃t(t ∈ ∪x ∧ y = {t})) |
37 | 32, 33, 36 | 3bitr4i 268 |
. . . 4
⊢ (〈{y}, x〉 ∈ (( I ⊗ (( SI
◡ S
⊗ S ) “
1c)) “ ℘11c) ↔
y ∈ ℘1∪x) |
38 | 37 | releqmpt 5809 |
. . 3
⊢
((1c × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 ((
I ⊗ (( SI ◡ S ⊗
S ) “ 1c)) “ ℘11c)) “
1c)) = (x ∈ 1c ↦ ℘1∪x) |
39 | 1, 38 | eqtr4i 2376 |
. 2
⊢ Pw1Fn = ((1c × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 ((
I ⊗ (( SI ◡ S ⊗
S ) “ 1c)) “ ℘11c)) “
1c)) |
40 | | 1cex 4143 |
. . 3
⊢
1c ∈
V |
41 | | idex 5505 |
. . . . 5
⊢ I ∈ V |
42 | | ssetex 4745 |
. . . . . . . . 9
⊢ S ∈
V |
43 | 42 | cnvex 5103 |
. . . . . . . 8
⊢ ◡ S ∈ V |
44 | 43 | siex 4754 |
. . . . . . 7
⊢ SI ◡ S ∈
V |
45 | 44, 42 | txpex 5786 |
. . . . . 6
⊢ ( SI ◡ S ⊗ S ) ∈ V |
46 | 45, 40 | imaex 4748 |
. . . . 5
⊢ (( SI ◡ S ⊗ S ) “
1c) ∈ V |
47 | 41, 46 | txpex 5786 |
. . . 4
⊢ ( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) ∈ V |
48 | 40 | pw1ex 4304 |
. . . 4
⊢ ℘11c ∈ V |
49 | 47, 48 | imaex 4748 |
. . 3
⊢ (( I ⊗
(( SI ◡ S ⊗
S ) “ 1c)) “ ℘11c) ∈ V |
50 | 40, 49 | mptexlem 5811 |
. 2
⊢
((1c × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 ((
I ⊗ (( SI ◡ S ⊗
S ) “ 1c)) “ ℘11c)) “
1c)) ∈ V |
51 | 39, 50 | eqeltri 2423 |
1
⊢ Pw1Fn ∈
V |