MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsmuleqdivd Structured version   Visualization version   GIF version

Theorem cvsmuleqdivd 23740
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsmuleqdivd.1 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
Assertion
Ref Expression
cvsmuleqdivd (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))

Proof of Theorem cvsmuleqdivd
StepHypRef Expression
1 cvsmuleqdivd.1 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
21oveq2d 7174 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 23732 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 23685 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
108, 9sseldd 3970 . . . . 5 (𝜑𝐴 ∈ ℂ)
11 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1210, 11recid2d 11414 . . . 4 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1312oveq1d 7173 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋))
145clm1 23679 . . . . . . 7 (𝑊 ∈ ℂMod → 1 = (1r𝐹))
154, 14syl 17 . . . . . 6 (𝜑 → 1 = (1r𝐹))
165clmring 23676 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
17 eqid 2823 . . . . . . . 8 (1r𝐹) = (1r𝐹)
186, 17ringidcl 19320 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
194, 16, 183syl 18 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
2015, 19eqeltrd 2915 . . . . 5 (𝜑 → 1 ∈ 𝐾)
215, 6cvsdivcl 23739 . . . . 5 ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾𝐴𝐾𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾)
223, 20, 9, 11, 21syl13anc 1368 . . . 4 (𝜑 → (1 / 𝐴) ∈ 𝐾)
23 cvsdiveqd.x . . . 4 (𝜑𝑋𝑉)
24 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
25 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2624, 5, 25, 6clmvsass 23695 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
274, 22, 9, 23, 26syl13anc 1368 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
2824, 25clmvs1 23699 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (1 · 𝑋) = 𝑋)
294, 23, 28syl2anc 586 . . 3 (𝜑 → (1 · 𝑋) = 𝑋)
3013, 27, 293eqtr3d 2866 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋)
31 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
328, 31sseldd 3970 . . . . 5 (𝜑𝐵 ∈ ℂ)
3332, 10, 11divrec2d 11422 . . . 4 (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵))
3433oveq1d 7173 . . 3 (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌))
35 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
3624, 5, 25, 6clmvsass 23695 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐵𝐾𝑌𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
374, 22, 31, 35, 36syl13anc 1368 . . 3 (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3834, 37eqtr2d 2859 . 2 (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌))
392, 30, 383eqtr3d 2866 1 (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  wss 3938  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   · cmul 10544   / cdiv 11299  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  1rcur 19253  Ringcrg 19299  ℂModcclm 23668  ℂVecccvs 23729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-cmn 18910  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-subrg 19535  df-lmod 19638  df-lvec 19877  df-cnfld 20548  df-clm 23669  df-cvs 23730
This theorem is referenced by:  ttgcontlem1  26673
  Copyright terms: Public domain W3C validator