MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsmuleqdivd Structured version   Visualization version   GIF version

Theorem cvsmuleqdivd 22874
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsmuleqdivd.1 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
Assertion
Ref Expression
cvsmuleqdivd (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))

Proof of Theorem cvsmuleqdivd
StepHypRef Expression
1 cvsmuleqdivd.1 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
21oveq2d 6631 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 22866 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 22819 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
108, 9sseldd 3589 . . . . 5 (𝜑𝐴 ∈ ℂ)
11 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1210, 11recid2d 10757 . . . 4 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1312oveq1d 6630 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋))
145clm1 22813 . . . . . . 7 (𝑊 ∈ ℂMod → 1 = (1r𝐹))
154, 14syl 17 . . . . . 6 (𝜑 → 1 = (1r𝐹))
165clmring 22810 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
17 eqid 2621 . . . . . . . 8 (1r𝐹) = (1r𝐹)
186, 17ringidcl 18508 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
194, 16, 183syl 18 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
2015, 19eqeltrd 2698 . . . . 5 (𝜑 → 1 ∈ 𝐾)
215, 6cvsdivcl 22873 . . . . 5 ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾𝐴𝐾𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾)
223, 20, 9, 11, 21syl13anc 1325 . . . 4 (𝜑 → (1 / 𝐴) ∈ 𝐾)
23 cvsdiveqd.x . . . 4 (𝜑𝑋𝑉)
24 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
25 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2624, 5, 25, 6clmvsass 22829 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
274, 22, 9, 23, 26syl13anc 1325 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
2824, 25clmvs1 22833 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (1 · 𝑋) = 𝑋)
294, 23, 28syl2anc 692 . . 3 (𝜑 → (1 · 𝑋) = 𝑋)
3013, 27, 293eqtr3d 2663 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋)
31 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
328, 31sseldd 3589 . . . . 5 (𝜑𝐵 ∈ ℂ)
3332, 10, 11divrec2d 10765 . . . 4 (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵))
3433oveq1d 6630 . . 3 (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌))
35 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
3624, 5, 25, 6clmvsass 22829 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐵𝐾𝑌𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
374, 22, 31, 35, 36syl13anc 1325 . . 3 (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3834, 37eqtr2d 2656 . 2 (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌))
392, 30, 383eqtr3d 2663 1 (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790  wss 3560  cfv 5857  (class class class)co 6615  cc 9894  0cc0 9896  1c1 9897   · cmul 9901   / cdiv 10644  Basecbs 15800  Scalarcsca 15884   ·𝑠 cvsca 15885  1rcur 18441  Ringcrg 18487  ℂModcclm 22802  ℂVecccvs 22863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-subg 17531  df-cmn 18135  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-drng 18689  df-subrg 18718  df-lmod 18805  df-lvec 19043  df-cnfld 19687  df-clm 22803  df-cvs 22864
This theorem is referenced by:  ttgcontlem1  25699
  Copyright terms: Public domain W3C validator