MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmulsumfsupp Structured version   Visualization version   GIF version

Theorem decpmatmulsumfsupp 20510
Description: Lemma 0 for pm2mpmhm 20557. (Contributed by AV, 21-Oct-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
decpmatmulsumfsupp.m · = (.r𝐴)
decpmatmulsumfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmatmulsumfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))))) finSupp 0 )
Distinct variable groups:   𝐵,𝑘,𝑙   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘,𝑙   𝐴,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝐴,𝑙   𝐵,𝑙   𝑁,𝑙,𝑥,𝑦   · ,𝑙
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑘,𝑙)   𝑃(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑘)   0 (𝑥,𝑦,𝑘,𝑙)

Proof of Theorem decpmatmulsumfsupp
Dummy variables 𝑖 𝑗 𝑛 𝑠 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatmulsumfsupp.0 . . . 4 0 = (0g𝐴)
2 fvex 6163 . . . 4 (0g𝐴) ∈ V
31, 2eqeltri 2694 . . 3 0 ∈ V
43a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 0 ∈ V)
5 ovexd 6640 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))))) ∈ V)
6 oveq2 6618 . . . 4 (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛))
7 oveq1 6617 . . . . . 6 (𝑙 = 𝑛 → (𝑙𝑘) = (𝑛𝑘))
87oveq2d 6626 . . . . 5 (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙𝑘)) = (𝑦 decompPMat (𝑛𝑘)))
98oveq2d 6626 . . . 4 (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))) = ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))
106, 9mpteq12dv 4698 . . 3 (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘)))))
1110oveq2d 6626 . 2 (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))))
12 simpll 789 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
13 simplr 791 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
14 decpmatmul.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
15 decpmatmul.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
1614, 15pmatring 20430 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
1716anim1i 591 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
18 3anass 1040 . . . . . . 7 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
1917, 18sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
20 decpmatmul.b . . . . . . 7 𝐵 = (Base‘𝐶)
21 eqid 2621 . . . . . . 7 (.r𝐶) = (.r𝐶)
2220, 21ringcl 18493 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
2319, 22syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
24 eqid 2621 . . . . . 6 (0g𝑅) = (0g𝑅)
2514, 15, 20, 24pmatcoe1fsupp 20438 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
2612, 13, 23, 25syl3anc 1323 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
27 oveq1 6617 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑖 → (𝑎(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑏))
2827fveq2d 6157 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)))
2928fveq1d 6155 . . . . . . . . . . . . . . 15 (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛))
3029eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
31 oveq2 6618 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑗 → (𝑖(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑗))
3231fveq2d 6157 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)))
3332fveq1d 6155 . . . . . . . . . . . . . . 15 (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛))
3433eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3530, 34rspc2va 3311 . . . . . . . . . . . . 13 (((𝑖𝑁𝑗𝑁) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3635expcom 451 . . . . . . . . . . . 12 (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3736adantl 482 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
38373impib 1259 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3938mpt2eq3dva 6679 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
40 decpmatmul.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
4140, 24mat0op 20157 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
421, 41syl5eq 2667 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4342ad3antrrr 765 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4439, 43eqtr4d 2658 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )
4544ex 450 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
4645imim2d 57 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4746ralimdva 2957 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4847reximdv 3011 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4926, 48mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
50 decpmatmulsumfsupp.m . . . . . . . . . . . 12 · = (.r𝐴)
5150oveqi 6623 . . . . . . . . . . 11 ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))
5251a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))
5352mpteq2dv 4710 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))))
5453oveq2d 6626 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
55 simpllr 798 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
56 simplr 791 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑥𝐵𝑦𝐵))
57 simpr 477 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5814, 15, 20, 40decpmatmul 20509 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
5955, 56, 57, 58syl3anc 1323 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
6015, 20decpmatval 20502 . . . . . . . . 9 (((𝑥(.r𝐶)𝑦) ∈ 𝐵𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
6123, 60sylan 488 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
6254, 59, 613eqtr2d 2661 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
6362eqeq1d 2623 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
6463imbi2d 330 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6564ralbidva 2980 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6665rexbidv 3046 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6749, 66mpbird 247 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ))
684, 5, 11, 67mptnn0fsuppd 12746 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cmpt2 6612  Fincfn 7907   finSupp cfsupp 8227  0cc0 9888   < clt 10026  cmin 10218  0cn0 11244  ...cfz 12276  Basecbs 15792  .rcmulr 15874  0gc0g 16032   Σg cgsu 16033  Ringcrg 18479  Poly1cpl1 19479  coe1cco1 19480   Mat cmat 20145   decompPMat cdecpmat 20499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-hom 15898  df-cco 15899  df-0g 16034  df-gsum 16035  df-prds 16040  df-pws 16042  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-subrg 18710  df-lmod 18797  df-lss 18865  df-sra 19104  df-rgmod 19105  df-psr 19288  df-mpl 19290  df-opsr 19292  df-psr1 19482  df-ply1 19484  df-coe1 19485  df-dsmm 20008  df-frlm 20023  df-mamu 20122  df-mat 20146  df-decpmat 20500
This theorem is referenced by:  pm2mpmhmlem2  20556
  Copyright terms: Public domain W3C validator