MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmulsumfsupp Structured version   Visualization version   GIF version

Theorem decpmatmulsumfsupp 21381
Description: Lemma 0 for pm2mpmhm 21428. (Contributed by AV, 21-Oct-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
decpmatmulsumfsupp.m · = (.r𝐴)
decpmatmulsumfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmatmulsumfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))))) finSupp 0 )
Distinct variable groups:   𝐵,𝑘,𝑙   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘,𝑙   𝐴,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝐴,𝑙   𝐵,𝑙   𝑁,𝑙,𝑥,𝑦   · ,𝑙
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑘,𝑙)   𝑃(𝑥,𝑦,𝑙)   · (𝑥,𝑦,𝑘)   0 (𝑥,𝑦,𝑘,𝑙)

Proof of Theorem decpmatmulsumfsupp
Dummy variables 𝑖 𝑗 𝑛 𝑠 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmatmulsumfsupp.0 . . . 4 0 = (0g𝐴)
21fvexi 6684 . . 3 0 ∈ V
32a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 0 ∈ V)
4 ovexd 7191 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑙 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))))) ∈ V)
5 oveq2 7164 . . . 4 (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛))
6 oveq1 7163 . . . . . 6 (𝑙 = 𝑛 → (𝑙𝑘) = (𝑛𝑘))
76oveq2d 7172 . . . . 5 (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙𝑘)) = (𝑦 decompPMat (𝑛𝑘)))
87oveq2d 7172 . . . 4 (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))) = ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))
95, 8mpteq12dv 5151 . . 3 (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘)))))
109oveq2d 7172 . 2 (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))))
11 simpll 765 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
12 simplr 767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
13 decpmatmul.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
14 decpmatmul.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
1513, 14pmatring 21301 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
1615anim1i 616 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
17 3anass 1091 . . . . . . 7 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
1816, 17sylibr 236 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
19 decpmatmul.b . . . . . . 7 𝐵 = (Base‘𝐶)
20 eqid 2821 . . . . . . 7 (.r𝐶) = (.r𝐶)
2119, 20ringcl 19311 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
2218, 21syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐶)𝑦) ∈ 𝐵)
23 eqid 2821 . . . . . 6 (0g𝑅) = (0g𝑅)
2413, 14, 19, 23pmatcoe1fsupp 21309 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
2511, 12, 22, 24syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
26 fvoveq1 7179 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)))
2726fveq1d 6672 . . . . . . . . . . . . . . 15 (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛))
2827eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)))
29 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑗 → (𝑖(𝑥(.r𝐶)𝑦)𝑏) = (𝑖(𝑥(.r𝐶)𝑦)𝑗))
3029fveq2d 6674 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗)))
3130fveq1d 6672 . . . . . . . . . . . . . . 15 (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛))
3231eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) ↔ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3328, 32rspc2va 3634 . . . . . . . . . . . . 13 (((𝑖𝑁𝑗𝑁) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3433expcom 416 . . . . . . . . . . . 12 (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
3534adantl 484 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅)))
36353impib 1112 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛) = (0g𝑅))
3736mpoeq3dva 7231 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 decpmatmul.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
3938, 23mat0op 21028 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
401, 39syl5eq 2868 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4140ad3antrrr 728 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → 0 = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
4237, 41eqtr4d 2859 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )
4342ex 415 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
4443imim2d 57 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4544ralimdva 3177 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4645reximdv 3273 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎𝑁𝑏𝑁 ((coe1‘(𝑎(𝑥(.r𝐶)𝑦)𝑏))‘𝑛) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
4725, 46mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
48 decpmatmulsumfsupp.m . . . . . . . . . . . 12 · = (.r𝐴)
4948oveqi 7169 . . . . . . . . . . 11 ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))
5049a1i 11 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))) = ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))
5150mpteq2dv 5162 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘)))))
5251oveq2d 7172 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
5313, 14, 19, 38decpmatmul 21380 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
5453ad4ant234 1171 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r𝐴)(𝑦 decompPMat (𝑛𝑘))))))
5514, 19decpmatval 21373 . . . . . . . . 9 (((𝑥(.r𝐶)𝑦) ∈ 𝐵𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
5622, 55sylan 582 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r𝐶)𝑦) decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
5752, 54, 563eqtr2d 2862 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)))
5857eqeq1d 2823 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 ))
5958imbi2d 343 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6059ralbidva 3196 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6160rexbidv 3297 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖(𝑥(.r𝐶)𝑦)𝑗))‘𝑛)) = 0 )))
6247, 61mpbird 259 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ∃𝑠 ∈ ℕ0𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛𝑘))))) = 0 ))
633, 4, 10, 62mptnn0fsuppd 13367 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙𝑘)))))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509   finSupp cfsupp 8833  0cc0 10537   < clt 10675  cmin 10870  0cn0 11898  ...cfz 12893  Basecbs 16483  .rcmulr 16566  0gc0g 16713   Σg cgsu 16714  Ringcrg 19297  Poly1cpl1 20345  coe1cco1 20346   Mat cmat 21016   decompPMat cdecpmat 21370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-psr 20136  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-ply1 20350  df-coe1 20351  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-decpmat 21371
This theorem is referenced by:  pm2mpmhmlem2  21427
  Copyright terms: Public domain W3C validator