Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem12 Structured version   Visualization version   GIF version

Theorem dnibndlem12 31455
Description: Lemma for dnibnd 31457. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem12.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem12.2 (𝜑𝐴 ∈ ℝ)
dnibndlem12.3 (𝜑𝐵 ∈ ℝ)
dnibndlem12.4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem12 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem12
StepHypRef Expression
1 dnibndlem12.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21dnicld1 31438 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem12.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
43dnicld1 31438 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 10309 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
65recnd 9924 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
76abscld 13969 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
8 1red 9911 . . 3 (𝜑 → 1 ∈ ℝ)
91, 3resubcld 10309 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
109recnd 9924 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
1110abscld 13969 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
128rehalfcld 11126 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
133, 1dnibndlem11 31454 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
14 halflt1 11097 . . . . . 6 (1 / 2) < 1
15 halfre 11093 . . . . . . . 8 (1 / 2) ∈ ℝ
16 1re 9895 . . . . . . . 8 1 ∈ ℝ
1715, 16pm3.2i 469 . . . . . . 7 ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ)
18 ltle 9977 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2) < 1 → (1 / 2) ≤ 1))
1917, 18ax-mp 5 . . . . . 6 ((1 / 2) < 1 → (1 / 2) ≤ 1)
2014, 19ax-mp 5 . . . . 5 (1 / 2) ≤ 1
2120a1i 11 . . . 4 (𝜑 → (1 / 2) ≤ 1)
227, 12, 8, 13, 21letrd 10045 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 1)
23 dnibndlem12.4 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
243, 1, 23dnibndlem10 31453 . . . 4 (𝜑 → 1 ≤ (𝐵𝐴))
259leabsd 13947 . . . 4 (𝜑 → (𝐵𝐴) ≤ (abs‘(𝐵𝐴)))
268, 9, 11, 24, 25letrd 10045 . . 3 (𝜑 → 1 ≤ (abs‘(𝐵𝐴)))
277, 8, 11, 22, 26letrd 10045 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
28 dnibndlem12.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2928, 3, 1dnibndlem1 31444 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
3027, 29mpbird 245 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cr 9791  1c1 9793   + caddc 9795   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  2c2 10917  cfl 12408  abscabs 13768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fl 12410  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770
This theorem is referenced by:  dnibndlem13  31456
  Copyright terms: Public domain W3C validator