Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngmul0or Structured version   Visualization version   GIF version

Theorem drngmul0or 18816
 Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.)
Hypotheses
Ref Expression
drngmuleq0.b 𝐵 = (Base‘𝑅)
drngmuleq0.o 0 = (0g𝑅)
drngmuleq0.t · = (.r𝑅)
drngmuleq0.r (𝜑𝑅 ∈ DivRing)
drngmuleq0.x (𝜑𝑋𝐵)
drngmuleq0.y (𝜑𝑌𝐵)
Assertion
Ref Expression
drngmul0or (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem drngmul0or
StepHypRef Expression
1 df-ne 2824 . . . . 5 (𝑋0 ↔ ¬ 𝑋 = 0 )
2 oveq2 6698 . . . . . . . 8 ((𝑋 · 𝑌) = 0 → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
32ad2antlr 763 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = (((invr𝑅)‘𝑋) · 0 ))
4 drngmuleq0.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ DivRing)
54adantr 480 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑅 ∈ DivRing)
6 drngmuleq0.x . . . . . . . . . . . 12 (𝜑𝑋𝐵)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋𝐵)
8 simpr 476 . . . . . . . . . . 11 ((𝜑𝑋0 ) → 𝑋0 )
9 drngmuleq0.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
10 drngmuleq0.o . . . . . . . . . . . 12 0 = (0g𝑅)
11 drngmuleq0.t . . . . . . . . . . . 12 · = (.r𝑅)
12 eqid 2651 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
13 eqid 2651 . . . . . . . . . . . 12 (invr𝑅) = (invr𝑅)
149, 10, 11, 12, 13drnginvrl 18814 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
155, 7, 8, 14syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
1615oveq1d 6705 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = ((1r𝑅) · 𝑌))
17 drngring 18802 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
184, 17syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑅 ∈ Ring)
209, 10, 13drnginvrcl 18812 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
215, 7, 8, 20syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
22 drngmuleq0.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑋0 ) → 𝑌𝐵)
249, 11ringass 18610 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
2519, 21, 7, 23, 24syl13anc 1368 . . . . . . . . 9 ((𝜑𝑋0 ) → ((((invr𝑅)‘𝑋) · 𝑋) · 𝑌) = (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)))
269, 11, 12ringlidm 18617 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
2718, 22, 26syl2anc 694 . . . . . . . . . 10 (𝜑 → ((1r𝑅) · 𝑌) = 𝑌)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑋0 ) → ((1r𝑅) · 𝑌) = 𝑌)
2916, 25, 283eqtr3d 2693 . . . . . . . 8 ((𝜑𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3029adantlr 751 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · (𝑋 · 𝑌)) = 𝑌)
3118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → 𝑅 ∈ Ring)
3231adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑅 ∈ Ring)
3321adantlr 751 . . . . . . . 8 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → ((invr𝑅)‘𝑋) ∈ 𝐵)
349, 11, 10ringrz 18634 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑋) ∈ 𝐵) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
3532, 33, 34syl2anc 694 . . . . . . 7 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → (((invr𝑅)‘𝑋) · 0 ) = 0 )
363, 30, 353eqtr3d 2693 . . . . . 6 (((𝜑 ∧ (𝑋 · 𝑌) = 0 ) ∧ 𝑋0 ) → 𝑌 = 0 )
3736ex 449 . . . . 5 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋0𝑌 = 0 ))
381, 37syl5bir 233 . . . 4 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (¬ 𝑋 = 0𝑌 = 0 ))
3938orrd 392 . . 3 ((𝜑 ∧ (𝑋 · 𝑌) = 0 ) → (𝑋 = 0𝑌 = 0 ))
4039ex 449 . 2 (𝜑 → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
419, 11, 10ringlz 18633 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
4218, 22, 41syl2anc 694 . . . 4 (𝜑 → ( 0 · 𝑌) = 0 )
43 oveq1 6697 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
4443eqeq1d 2653 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
4542, 44syl5ibrcom 237 . . 3 (𝜑 → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
469, 11, 10ringrz 18634 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
4718, 6, 46syl2anc 694 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
48 oveq2 6698 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
4948eqeq1d 2653 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
5047, 49syl5ibrcom 237 . . 3 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
5145, 50jaod 394 . 2 (𝜑 → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
5240, 51impbid 202 1 (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  .rcmulr 15989  0gc0g 16147  1rcur 18547  Ringcrg 18593  invrcinvr 18717  DivRingcdr 18795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-drng 18797 This theorem is referenced by:  drngmulne0  18817  drngmuleq0  18818
 Copyright terms: Public domain W3C validator