Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspds Structured version   Visualization version   GIF version

Theorem ellspds 30933
Description: Variation on ellspd 20946. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
ellspds.n 𝑁 = (LSpan‘𝑀)
ellspds.v 𝐵 = (Base‘𝑀)
ellspds.k 𝐾 = (Base‘𝑆)
ellspds.s 𝑆 = (Scalar‘𝑀)
ellspds.z 0 = (0g𝑆)
ellspds.t · = ( ·𝑠𝑀)
ellspds.m (𝜑𝑀 ∈ LMod)
ellspds.1 (𝜑𝑉𝐵)
Assertion
Ref Expression
ellspds (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   𝐵,𝑎   𝐾,𝑎,𝑣   𝑁,𝑎   𝑀,𝑎   𝑆,𝑎   𝑋,𝑎   𝑉,𝑎,𝑣   𝜑,𝑎,𝑣   0 ,𝑎   · ,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑁(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem ellspds
StepHypRef Expression
1 ellspds.n . . 3 𝑁 = (LSpan‘𝑀)
2 ellspds.v . . 3 𝐵 = (Base‘𝑀)
3 ellspds.k . . 3 𝐾 = (Base‘𝑆)
4 ellspds.s . . 3 𝑆 = (Scalar‘𝑀)
5 ellspds.z . . 3 0 = (0g𝑆)
6 ellspds.t . . 3 · = ( ·𝑠𝑀)
7 f1oi 6652 . . . . 5 ( I ↾ 𝑉):𝑉1-1-onto𝑉
8 f1of 6615 . . . . 5 (( I ↾ 𝑉):𝑉1-1-onto𝑉 → ( I ↾ 𝑉):𝑉𝑉)
97, 8mp1i 13 . . . 4 (𝜑 → ( I ↾ 𝑉):𝑉𝑉)
10 ellspds.1 . . . 4 (𝜑𝑉𝐵)
119, 10fssd 6528 . . 3 (𝜑 → ( I ↾ 𝑉):𝑉𝐵)
12 ellspds.m . . 3 (𝜑𝑀 ∈ LMod)
132fvexi 6684 . . . . 5 𝐵 ∈ V
1413a1i 11 . . . 4 (𝜑𝐵 ∈ V)
1514, 10ssexd 5228 . . 3 (𝜑𝑉 ∈ V)
161, 2, 3, 4, 5, 6, 11, 12, 15ellspd 20946 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))))))
17 ssid 3989 . . . . 5 𝑉𝑉
18 resiima 5944 . . . . 5 (𝑉𝑉 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
1917, 18mp1i 13 . . . 4 (𝜑 → (( I ↾ 𝑉) “ 𝑉) = 𝑉)
2019fveq2d 6674 . . 3 (𝜑 → (𝑁‘(( I ↾ 𝑉) “ 𝑉)) = (𝑁𝑉))
2120eleq2d 2898 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(( I ↾ 𝑉) “ 𝑉)) ↔ 𝑋 ∈ (𝑁𝑉)))
22 elmapfn 8429 . . . . . . . 8 (𝑎 ∈ (𝐾m 𝑉) → 𝑎 Fn 𝑉)
2322adantl 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑎 Fn 𝑉)
247, 8mp1i 13 . . . . . . . 8 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉):𝑉𝑉)
2524ffnd 6515 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ( I ↾ 𝑉) Fn 𝑉)
2615adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → 𝑉 ∈ V)
27 inidm 4195 . . . . . . 7 (𝑉𝑉) = 𝑉
28 eqidd 2822 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (𝑎𝑣) = (𝑎𝑣))
29 fvresi 6935 . . . . . . . 8 (𝑣𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3029adantl 484 . . . . . . 7 (((𝜑𝑎 ∈ (𝐾m 𝑉)) ∧ 𝑣𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣)
3123, 25, 26, 26, 27, 28, 30offval 7416 . . . . . 6 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑎f · ( I ↾ 𝑉)) = (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))
3231oveq2d 7172 . . . . 5 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))
3332eqeq2d 2832 . . . 4 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → (𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉))) ↔ 𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣)))))
3433anbi2d 630 . . 3 ((𝜑𝑎 ∈ (𝐾m 𝑉)) → ((𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ (𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3534rexbidva 3296 . 2 (𝜑 → (∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑎f · ( I ↾ 𝑉)))) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
3616, 21, 353bitr3d 311 1 (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146   I cid 5459  cres 5557  cima 5558   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  m cmap 8406   finSupp cfsupp 8833  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  LModclmod 19634  LSpanclspn 19743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lbs 19847  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-dsmm 20876  df-frlm 20891  df-uvc 20927
This theorem is referenced by:  lbslsp  30938  lbsdiflsp0  31022  fedgmul  31027
  Copyright terms: Public domain W3C validator