![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1muld | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1muld.t | ⊢ ∙ = (.r‘𝑃) |
evl1muld.s | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1muld | ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2760 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 19898 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmrcl1 18921 | . . . 4 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Ring) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Ring) |
10 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
11 | 10 | simpld 477 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
12 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
13 | 12 | simpld 477 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
14 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
15 | evl1muld.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
16 | 14, 15 | ringcl 18761 | . . 3 ⊢ ((𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 ∙ 𝑁) ∈ 𝑈) |
17 | 9, 11, 13, 16 | syl3anc 1477 | . 2 ⊢ (𝜑 → (𝑀 ∙ 𝑁) ∈ 𝑈) |
18 | eqid 2760 | . . . . . . 7 ⊢ (.r‘(𝑅 ↑s 𝐵)) = (.r‘(𝑅 ↑s 𝐵)) | |
19 | 14, 15, 18 | rhmmul 18929 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
20 | 7, 11, 13, 19 | syl3anc 1477 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
21 | eqid 2760 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
22 | fvex 6362 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
23 | 5, 22 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐵 ∈ V |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
25 | 14, 21 | rhmf 18928 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
26 | 7, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
27 | 26, 11 | ffvelrnd 6523 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
28 | 26, 13 | ffvelrnd 6523 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
29 | evl1muld.s | . . . . . 6 ⊢ · = (.r‘𝑅) | |
30 | 4, 21, 1, 24, 27, 28, 29, 18 | pwsmulrval 16353 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(.r‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘𝑓 · (𝑂‘𝑁))) |
31 | 20, 30 | eqtrd 2794 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 ∙ 𝑁)) = ((𝑂‘𝑀) ∘𝑓 · (𝑂‘𝑁))) |
32 | 31 | fveq1d 6354 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘𝑓 · (𝑂‘𝑁))‘𝑌)) |
33 | 4, 5, 21, 1, 24, 27 | pwselbas 16351 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
34 | ffn 6206 | . . . . 5 ⊢ ((𝑂‘𝑀):𝐵⟶𝐵 → (𝑂‘𝑀) Fn 𝐵) | |
35 | 33, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
36 | 4, 5, 21, 1, 24, 28 | pwselbas 16351 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
37 | ffn 6206 | . . . . 5 ⊢ ((𝑂‘𝑁):𝐵⟶𝐵 → (𝑂‘𝑁) Fn 𝐵) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
39 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
40 | fnfvof 7076 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘𝑓 · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) | |
41 | 35, 38, 24, 39, 40 | syl22anc 1478 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘𝑓 · (𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌))) |
42 | 10 | simprd 482 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
43 | 12 | simprd 482 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
44 | 42, 43 | oveq12d 6831 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌) · ((𝑂‘𝑁)‘𝑌)) = (𝑉 · 𝑊)) |
45 | 32, 41, 44 | 3eqtrd 2798 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊)) |
46 | 17, 45 | jca 555 | 1 ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ∘𝑓 cof 7060 Basecbs 16059 .rcmulr 16144 ↑s cpws 16309 Ringcrg 18747 CRingccrg 18748 RingHom crh 18914 Poly1cpl1 19749 eval1ce1 19881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-sup 8513 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-hom 16168 df-cco 16169 df-0g 16304 df-gsum 16305 df-prds 16310 df-pws 16312 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-ghm 17859 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-srg 18706 df-ring 18749 df-cring 18750 df-rnghom 18917 df-subrg 18980 df-lmod 19067 df-lss 19135 df-lsp 19174 df-assa 19514 df-asp 19515 df-ascl 19516 df-psr 19558 df-mvr 19559 df-mpl 19560 df-opsr 19562 df-evls 19708 df-evl 19709 df-psr1 19752 df-ply1 19754 df-evl1 19883 |
This theorem is referenced by: evl1vsd 19910 |
Copyright terms: Public domain | W3C validator |