MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfnfcls Structured version   Visualization version   GIF version

Theorem flimfnfcls 22636
Description: A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim 22635, this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
flimfnfcls (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem flimfnfcls
Dummy variables 𝑜 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimfcls 22634 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
2 flimtop 22573 . . . . . . . . 9 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
3 flimfnfcls.x . . . . . . . . . 10 𝑋 = 𝐽
43toptopon 21525 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
52, 4sylib 220 . . . . . . . 8 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ (TopOn‘𝑋))
65ad2antrr 724 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐽 ∈ (TopOn‘𝑋))
7 simplr 767 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝑔 ∈ (Fil‘𝑋))
8 simpr 487 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐹𝑔)
9 flimss2 22580 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
106, 7, 8, 9syl3anc 1367 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
11 simpll 765 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝐹))
1210, 11sseldd 3968 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝑔))
131, 12sseldi 3965 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fClus 𝑔))
1413ex 415 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
1514ralrimiva 3182 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
16 sseq2 3993 . . . . . 6 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
17 oveq2 7164 . . . . . . 7 (𝑔 = 𝐹 → (𝐽 fClus 𝑔) = (𝐽 fClus 𝐹))
1817eleq2d 2898 . . . . . 6 (𝑔 = 𝐹 → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus 𝐹)))
1916, 18imbi12d 347 . . . . 5 (𝑔 = 𝐹 → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
2019rspcv 3618 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
21 ssid 3989 . . . . . 6 𝐹𝐹
22 id 22 . . . . . 6 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)))
2321, 22mpi 20 . . . . 5 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fClus 𝐹))
24 fclstop 22619 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
253fclselbas 22624 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋)
2624, 25jca 514 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2723, 26syl 17 . . . 4 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2820, 27syl6 35 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐽 ∈ Top ∧ 𝐴𝑋)))
29 disjdif 4421 . . . . . . . . . . . . . 14 (𝑜 ∩ (𝑋𝑜)) = ∅
30 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (Fil‘𝑋))
31 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐽 ∈ Top)
323topopn 21514 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐽)
34 pwexg 5279 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
35 rabexg 5234 . . . . . . . . . . . . . . . . . . . . . 22 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
3633, 34, 353syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
37 unexg 7472 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
3830, 36, 37syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
39 ssfii 8883 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
41 filsspw 22459 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
42 ssrab2 4056 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋)
4441, 43unssd 4162 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
4544ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
46 ssun2 4149 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
47 sseq2 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑋𝑜) → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ (𝑋𝑜)))
48 difss 4108 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ 𝑋
49 elpw2g 5247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝐽 → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
5033, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
5148, 50mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ 𝒫 𝑋)
52 ssid 3989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ (𝑋𝑜)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ (𝑋𝑜))
5447, 51, 53elrabd 3682 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
5546, 54sseldi 3965 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))
5655ne0d 4301 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅)
57 sseq2 3993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑧 → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ 𝑧))
5857elrab 3680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ↔ (𝑧 ∈ 𝒫 𝑋 ∧ (𝑋𝑜) ⊆ 𝑧))
5958simprbi 499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} → (𝑋𝑜) ⊆ 𝑧)
6059ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑋𝑜) ⊆ 𝑧)
61 sslin 4211 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝑜) ⊆ 𝑧 → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
63 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ 𝑜𝐹)
6463adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ¬ 𝑜𝐹)
65 inssdif0 4329 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑋) ⊆ 𝑜 ↔ (𝑦 ∩ (𝑋𝑜)) = ∅)
66 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝐹 ∈ (Fil‘𝑋))
67 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝐹)
68 filelss 22460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
6966, 67, 68syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝑋)
70 df-ss 3952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑦)
7169, 70sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑋) = 𝑦)
7271sseq1d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑦𝑜))
7330ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝐹 ∈ (Fil‘𝑋))
74 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝐹)
75 elssuni 4868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑜𝐽𝑜 𝐽)
7675, 3sseqtrrdi 4018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑜𝐽𝑜𝑋)
7776ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
7877ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝑋)
79 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝑜)
80 filss 22461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑜𝑋𝑦𝑜)) → 𝑜𝐹)
8173, 74, 78, 79, 80syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝐹)
8281ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑜𝑜𝐹))
8372, 82sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑜𝐹))
8465, 83syl5bir 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦 ∩ (𝑋𝑜)) = ∅ → 𝑜𝐹))
8584necon3bd 3030 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (¬ 𝑜𝐹 → (𝑦 ∩ (𝑋𝑜)) ≠ ∅))
8664, 85mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ≠ ∅)
87 ssn0 4354 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧) ∧ (𝑦 ∩ (𝑋𝑜)) ≠ ∅) → (𝑦𝑧) ≠ ∅)
8862, 86, 87syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑧) ≠ ∅)
8988ralrimivva 3191 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅)
90 filfbas 22456 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
9130, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (fBas‘𝑋))
9248a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ 𝑋)
93 filtop 22463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
9430, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐹)
95 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑜 = 𝑋 → (𝑜𝐹𝑋𝐹))
9694, 95syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑜 = 𝑋𝑜𝐹))
9796necon3bd 3030 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ 𝑜𝐹𝑜𝑋))
9863, 97mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
99 pssdifn0 4325 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜𝑋𝑜𝑋) → (𝑋𝑜) ≠ ∅)
10077, 98, 99syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ≠ ∅)
101 supfil 22503 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐽 ∧ (𝑋𝑜) ⊆ 𝑋 ∧ (𝑋𝑜) ≠ ∅) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
10233, 92, 100, 101syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
103 filfbas 22456 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
105 fbunfip 22477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10691, 104, 105syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10789, 106mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
108 fsubbas 22475 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
10994, 108syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
11045, 56, 107, 109mpbir3and 1338 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋))
111 ssfg 22480 . . . . . . . . . . . . . . . . . . . 20 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
11340, 112sstrd 3977 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
114113unssad 4163 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
115 fgcl 22486 . . . . . . . . . . . . . . . . . . 19 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
116110, 115syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
117 sseq2 3993 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
118 oveq2 7164 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐽 fClus 𝑔) = (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
119118eleq2d 2898 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
120117, 119imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
121120rspcv 3618 . . . . . . . . . . . . . . . . . 18 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
122116, 121syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
123114, 122mpid 44 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
124 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
125 simplrl 775 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝑜𝐽)
126 simprrl 779 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐴𝑜)
127126adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴𝑜)
128113, 55sseldd 3968 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
129128adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
130 fclsopni 22623 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) ∧ (𝑜𝐽𝐴𝑜 ∧ (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
131124, 125, 127, 129, 130syl13anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
132131ex 415 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
133123, 132syld 47 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
134133necon2bd 3032 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑜 ∩ (𝑋𝑜)) = ∅ → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
13529, 134mpi 20 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
136135anassrs 470 . . . . . . . . . . . 12 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹)) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
137136expr 459 . . . . . . . . . . 11 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (¬ 𝑜𝐹 → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
138137con4d 115 . . . . . . . . . 10 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹))
139138ex 415 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹)))
140139com23 86 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑜𝑜𝐹)))
141140ralrimdva 3189 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ∀𝑜𝐽 (𝐴𝑜𝑜𝐹)))
142 simprr 771 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐴𝑋)
143141, 142jctild 528 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
144 simprl 769 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ Top)
145144, 4sylib 220 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
146 simpl 485 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐹 ∈ (Fil‘𝑋))
147 flimopn 22583 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
148145, 146, 147syl2anc 586 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
149143, 148sylibrd 261 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
150149ex 415 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))))
151150com23 86 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐹))))
15228, 151mpdd 43 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
15315, 152impbid2 228 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838  cfv 6355  (class class class)co 7156  ficfi 8874  fBascfbas 20533  filGencfg 20534  Topctop 21501  TopOnctopon 21518  Filcfil 22453   fLim cflim 22542   fClus cfcls 22544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513  df-fi 8875  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-fil 22454  df-flim 22547  df-fcls 22549
This theorem is referenced by:  cnpfcf  22649
  Copyright terms: Public domain W3C validator