MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfnfcls Structured version   Visualization version   GIF version

Theorem flimfnfcls 21737
Description: A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim 21736, this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
flimfnfcls (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝑔,𝑋

Proof of Theorem flimfnfcls
Dummy variables 𝑜 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimfcls 21735 . . . . 5 (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔)
2 flimtop 21674 . . . . . . . . 9 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
3 flimfnfcls.x . . . . . . . . . 10 𝑋 = 𝐽
43toptopon 20643 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
52, 4sylib 208 . . . . . . . 8 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ (TopOn‘𝑋))
65ad2antrr 761 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐽 ∈ (TopOn‘𝑋))
7 simplr 791 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝑔 ∈ (Fil‘𝑋))
8 simpr 477 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐹𝑔)
9 flimss2 21681 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
106, 7, 8, 9syl3anc 1323 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔))
11 simpll 789 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝐹))
1210, 11sseldd 3589 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fLim 𝑔))
131, 12sseldi 3586 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹𝑔) → 𝐴 ∈ (𝐽 fClus 𝑔))
1413ex 450 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
1514ralrimiva 2965 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
16 sseq2 3611 . . . . . 6 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
17 oveq2 6613 . . . . . . 7 (𝑔 = 𝐹 → (𝐽 fClus 𝑔) = (𝐽 fClus 𝐹))
1817eleq2d 2689 . . . . . 6 (𝑔 = 𝐹 → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus 𝐹)))
1916, 18imbi12d 334 . . . . 5 (𝑔 = 𝐹 → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
2019rspcv 3296 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹))))
21 ssid 3608 . . . . . 6 𝐹𝐹
22 id 22 . . . . . 6 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)))
2321, 22mpi 20 . . . . 5 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fClus 𝐹))
24 fclstop 21720 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
253fclselbas 21725 . . . . . 6 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴𝑋)
2624, 25jca 554 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2723, 26syl 17 . . . 4 ((𝐹𝐹𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐽 ∈ Top ∧ 𝐴𝑋))
2820, 27syl6 35 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐽 ∈ Top ∧ 𝐴𝑋)))
29 disjdif 4017 . . . . . . . . . . . . . 14 (𝑜 ∩ (𝑋𝑜)) = ∅
30 simpll 789 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (Fil‘𝑋))
31 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐽 ∈ Top)
323topopn 20631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ Top → 𝑋𝐽)
3331, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐽)
34 pwexg 4815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
35 rabexg 4777 . . . . . . . . . . . . . . . . . . . . . 22 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
3633, 34, 353syl 18 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V)
37 unexg 6913 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ V) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
3830, 36, 37syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V)
39 ssfii 8270 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ∈ V → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
41 filsspw 21560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
42 ssrab2 3671 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋)
4441, 43unssd 3772 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
4544ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋)
46 ssun2 3760 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ⊆ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
47 difss 3720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ 𝑋
48 elpw2g 4792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋𝐽 → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
4933, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑋𝑜) ∈ 𝒫 𝑋 ↔ (𝑋𝑜) ⊆ 𝑋))
5047, 49mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ 𝒫 𝑋)
51 ssid 3608 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑜) ⊆ (𝑋𝑜)
5251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ (𝑋𝑜))
53 sseq2 3611 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑋𝑜) → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ (𝑋𝑜)))
5453elrab 3351 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ↔ ((𝑋𝑜) ∈ 𝒫 𝑋 ∧ (𝑋𝑜) ⊆ (𝑋𝑜)))
5550, 52, 54sylanbrc 697 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})
5646, 55sseldi 3586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))
57 ne0i 3902 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅)
59 sseq2 3611 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑧 → ((𝑋𝑜) ⊆ 𝑥 ↔ (𝑋𝑜) ⊆ 𝑧))
6059elrab 3351 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ↔ (𝑧 ∈ 𝒫 𝑋 ∧ (𝑋𝑜) ⊆ 𝑧))
6160simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} → (𝑋𝑜) ⊆ 𝑧)
6261ad2antll 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑋𝑜) ⊆ 𝑧)
63 sslin 3822 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝑜) ⊆ 𝑧 → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
6462, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧))
65 simprrr 804 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ 𝑜𝐹)
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ¬ 𝑜𝐹)
67 inssdif0 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑋) ⊆ 𝑜 ↔ (𝑦 ∩ (𝑋𝑜)) = ∅)
68 simplll 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝐹 ∈ (Fil‘𝑋))
69 simprl 793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝐹)
70 filelss 21561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
7168, 69, 70syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → 𝑦𝑋)
72 df-ss 3574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑦)
7371, 72sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑋) = 𝑦)
7473sseq1d 3616 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑦𝑜))
7530ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝐹 ∈ (Fil‘𝑋))
76 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝐹)
77 elssuni 4438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑜𝐽𝑜 𝐽)
7877, 3syl6sseqr 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑜𝐽𝑜𝑋)
7978ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
8079ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝑋)
81 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑦𝑜)
82 filss 21562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑜𝑋𝑦𝑜)) → 𝑜𝐹)
8375, 76, 80, 81, 82syl13anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∧ 𝑦𝑜) → 𝑜𝐹)
8483ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑜𝑜𝐹))
8574, 84sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦𝑋) ⊆ 𝑜𝑜𝐹))
8667, 85syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → ((𝑦 ∩ (𝑋𝑜)) = ∅ → 𝑜𝐹))
8786necon3bd 2810 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (¬ 𝑜𝐹 → (𝑦 ∩ (𝑋𝑜)) ≠ ∅))
8866, 87mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋𝑜)) ≠ ∅)
89 ssn0 3953 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∩ (𝑋𝑜)) ⊆ (𝑦𝑧) ∧ (𝑦 ∩ (𝑋𝑜)) ≠ ∅) → (𝑦𝑧) ≠ ∅)
9064, 88, 89syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ (𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) → (𝑦𝑧) ≠ ∅)
9190ralrimivva 2970 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅)
92 filfbas 21557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
9330, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ∈ (fBas‘𝑋))
9447a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ⊆ 𝑋)
95 filtop 21564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
9630, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑋𝐹)
97 eleq1 2692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑜 = 𝑋 → (𝑜𝐹𝑋𝐹))
9896, 97syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑜 = 𝑋𝑜𝐹))
9998necon3bd 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ 𝑜𝐹𝑜𝑋))
10065, 99mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝑜𝑋)
101 pssdifn0 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜𝑋𝑜𝑋) → (𝑋𝑜) ≠ ∅)
10279, 100, 101syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ≠ ∅)
103 supfil 21604 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐽 ∧ (𝑋𝑜) ⊆ 𝑋 ∧ (𝑋𝑜) ≠ ∅) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
10433, 94, 102, 103syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋))
105 filfbas 21557 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋))
107 fbunfip 21578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10893, 106, 107syl2anc 692 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ↔ ∀𝑦𝐹𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥} (𝑦𝑧) ≠ ∅))
10991, 108mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))
110 fsubbas 21576 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
11196, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
11245, 58, 109, 111mpbir3and 1243 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋))
113 ssfg 21581 . . . . . . . . . . . . . . . . . . . 20 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
114112, 113syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
11540, 114sstrd 3598 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
116115unssad 3773 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
117 fgcl 21587 . . . . . . . . . . . . . . . . . . 19 ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋))
119 sseq2 3611 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐹𝑔𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
120 oveq2 6613 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐽 fClus 𝑔) = (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
121120eleq2d 2689 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
122119, 121imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → ((𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
123122rspcv 3296 . . . . . . . . . . . . . . . . . 18 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
124118, 123syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))))
125116, 124mpid 44 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))))
126 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))))
127 simplrl 799 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝑜𝐽)
128 simprrl 803 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → 𝐴𝑜)
129128adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → 𝐴𝑜)
130115, 56sseldd 3589 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
131130adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))
132 fclsopni 21724 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) ∧ (𝑜𝐽𝐴𝑜 ∧ (𝑋𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
133126, 127, 129, 131, 132syl13anc 1325 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅)
134133ex 450 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑜) ⊆ 𝑥})))) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
135125, 134syld 47 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝑜 ∩ (𝑋𝑜)) ≠ ∅))
136135necon2bd 2812 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ((𝑜 ∩ (𝑋𝑜)) = ∅ → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
13729, 136mpi 20 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ (𝑜𝐽 ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹))) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
138137anassrs 679 . . . . . . . . . . . 12 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ (𝐴𝑜 ∧ ¬ 𝑜𝐹)) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)))
139138expr 642 . . . . . . . . . . 11 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (¬ 𝑜𝐹 → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
140139con4d 114 . . . . . . . . . 10 ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹))
141140ex 450 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜𝐹)))
142141com23 86 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) ∧ 𝑜𝐽) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑜𝑜𝐹)))
143142ralrimdva 2968 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ∀𝑜𝐽 (𝐴𝑜𝑜𝐹)))
144 simprr 795 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐴𝑋)
145143, 144jctild 565 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
146 simprl 793 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ Top)
147146, 4sylib 208 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
148 simpl 473 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → 𝐹 ∈ (Fil‘𝑋))
149 flimopn 21684 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
150147, 148, 149syl2anc 692 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜𝑜𝐹))))
151145, 150sylibrd 249 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
152151ex 450 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))))
153152com23 86 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐹))))
15428, 153mpdd 43 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))
15515, 154impbid2 216 1 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝐴 ∈ (𝐽 fClus 𝑔))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  {crab 2916  Vcvv 3191  cdif 3557  cun 3558  cin 3559  wss 3560  c0 3896  𝒫 cpw 4135   cuni 4407  cfv 5850  (class class class)co 6605  ficfi 8261  fBascfbas 19648  filGencfg 19649  Topctop 20612  TopOnctopon 20613  Filcfil 21554   fLim cflim 21643   fClus cfcls 21645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-fin 7904  df-fi 8262  df-fbas 19657  df-fg 19658  df-top 20616  df-topon 20618  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-fil 21555  df-flim 21648  df-fcls 21650
This theorem is referenced by:  cnpfcf  21750
  Copyright terms: Public domain W3C validator