Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem6 Structured version   Visualization version   GIF version

Theorem fourierdlem6 42405
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem6.a (𝜑𝐴 ∈ ℝ)
fourierdlem6.b (𝜑𝐵 ∈ ℝ)
fourierdlem6.altb (𝜑𝐴 < 𝐵)
fourierdlem6.t 𝑇 = (𝐵𝐴)
fourierdlem6.5 (𝜑𝑋 ∈ ℝ)
fourierdlem6.i (𝜑𝐼 ∈ ℤ)
fourierdlem6.j (𝜑𝐽 ∈ ℤ)
fourierdlem6.iltj (𝜑𝐼 < 𝐽)
fourierdlem6.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
fourierdlem6.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
fourierdlem6 (𝜑𝐽 = (𝐼 + 1))

Proof of Theorem fourierdlem6
StepHypRef Expression
1 fourierdlem6.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
21zred 12090 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
3 fourierdlem6.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
43zred 12090 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
52, 4resubcld 11070 . . . . . 6 (𝜑 → (𝐽𝐼) ∈ ℝ)
6 fourierdlem6.t . . . . . . 7 𝑇 = (𝐵𝐴)
7 fourierdlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
8 fourierdlem6.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
97, 8resubcld 11070 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
106, 9eqeltrid 2919 . . . . . 6 (𝜑𝑇 ∈ ℝ)
115, 10remulcld 10673 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ∈ ℝ)
12 fourierdlem6.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
138, 7posdifd 11229 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1412, 13mpbid 234 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1514, 6breqtrrdi 5110 . . . . . 6 (𝜑 → 0 < 𝑇)
1610, 15elrpd 12431 . . . . 5 (𝜑𝑇 ∈ ℝ+)
17 fourierdlem6.jel . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
18 fourierdlem6.iel . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
198, 7, 17, 18iccsuble 41802 . . . . . 6 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵𝐴))
202recnd 10671 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
214recnd 10671 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
2210recnd 10671 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
2320, 21, 22subdird 11099 . . . . . . 7 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
24 fourierdlem6.5 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2524recnd 10671 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
262, 10remulcld 10673 . . . . . . . . 9 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
2726recnd 10671 . . . . . . . 8 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
284, 10remulcld 10673 . . . . . . . . 9 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
2928recnd 10671 . . . . . . . 8 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
3025, 27, 29pnpcand 11036 . . . . . . 7 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
3123, 30eqtr4d 2861 . . . . . 6 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))))
326a1i 11 . . . . . 6 (𝜑𝑇 = (𝐵𝐴))
3319, 31, 323brtr4d 5100 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ≤ 𝑇)
3411, 10, 16, 33lediv1dd 12492 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇))
355recnd 10671 . . . . 5 (𝜑 → (𝐽𝐼) ∈ ℂ)
3615gt0ne0d 11206 . . . . 5 (𝜑𝑇 ≠ 0)
3735, 22, 36divcan4d 11424 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) = (𝐽𝐼))
3822, 36dividd 11416 . . . 4 (𝜑 → (𝑇 / 𝑇) = 1)
3934, 37, 383brtr3d 5099 . . 3 (𝜑 → (𝐽𝐼) ≤ 1)
40 1red 10644 . . . 4 (𝜑 → 1 ∈ ℝ)
412, 4, 40lesubadd2d 11241 . . 3 (𝜑 → ((𝐽𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1)))
4239, 41mpbid 234 . 2 (𝜑𝐽 ≤ (𝐼 + 1))
43 fourierdlem6.iltj . . 3 (𝜑𝐼 < 𝐽)
44 zltp1le 12035 . . . 4 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
453, 1, 44syl2anc 586 . . 3 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
4643, 45mpbid 234 . 2 (𝜑 → (𝐼 + 1) ≤ 𝐽)
474, 40readdcld 10672 . . 3 (𝜑 → (𝐼 + 1) ∈ ℝ)
482, 47letri3d 10784 . 2 (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽)))
4942, 46, 48mpbir2and 711 1 (𝜑𝐽 = (𝐼 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cz 11984  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-rp 12393  df-icc 12748
This theorem is referenced by:  fourierdlem35  42434  fourierdlem51  42449
  Copyright terms: Public domain W3C validator