MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddvdsd Structured version   Visualization version   GIF version

Theorem fproddvdsd 15684
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020.) (Proof shortened by AV, 2-Aug-2021.)
Hypotheses
Ref Expression
fproddvdsd.f (𝜑𝐴 ∈ Fin)
fproddvdsd.s (𝜑𝐴 ⊆ ℤ)
Assertion
Ref Expression
fproddvdsd (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fproddvdsd
StepHypRef Expression
1 fproddvdsd.f . . 3 (𝜑𝐴 ∈ Fin)
2 fproddvdsd.s . . 3 (𝜑𝐴 ⊆ ℤ)
3 f1oi 6652 . . . 4 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
4 f1of 6615 . . . 4 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ⟶ℤ)
53, 4mp1i 13 . . 3 (𝜑 → ( I ↾ ℤ):ℤ⟶ℤ)
61, 2, 5fprodfvdvdsd 15683 . 2 (𝜑 → ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
72sselda 3967 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℤ)
8 fvresi 6935 . . . . . 6 (𝑥 ∈ ℤ → (( I ↾ ℤ)‘𝑥) = 𝑥)
97, 8syl 17 . . . . 5 ((𝜑𝑥𝐴) → (( I ↾ ℤ)‘𝑥) = 𝑥)
109eqcomd 2827 . . . 4 ((𝜑𝑥𝐴) → 𝑥 = (( I ↾ ℤ)‘𝑥))
112sseld 3966 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ ℤ))
1211adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑘𝐴𝑘 ∈ ℤ))
1312imp 409 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 ∈ ℤ)
14 fvresi 6935 . . . . . . 7 (𝑘 ∈ ℤ → (( I ↾ ℤ)‘𝑘) = 𝑘)
1513, 14syl 17 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (( I ↾ ℤ)‘𝑘) = 𝑘)
1615eqcomd 2827 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘 = (( I ↾ ℤ)‘𝑘))
1716prodeq2dv 15277 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 𝑘 = ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘))
1810, 17breq12d 5079 . . 3 ((𝜑𝑥𝐴) → (𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
1918ralbidva 3196 . 2 (𝜑 → (∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘 ↔ ∀𝑥𝐴 (( I ↾ ℤ)‘𝑥) ∥ ∏𝑘𝐴 (( I ↾ ℤ)‘𝑘)))
206, 19mpbird 259 1 (𝜑 → ∀𝑥𝐴 𝑥 ∥ ∏𝑘𝐴 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3936   class class class wbr 5066   I cid 5459  cres 5557  wf 6351  1-1-ontowf1o 6354  cfv 6355  Fincfn 8509  cz 11982  cprod 15259  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608
This theorem is referenced by:  absproddvds  15961
  Copyright terms: Public domain W3C validator